УДК 519.86:338.2

5.2.2. Математические, статистические и инструментальные методы в экономике

РАЗРАБОТКА АДАПТИВНОЙ **МАТЕМАТИЧЕСКОЙ МОДЕЛИ** УПРАВЛЕНИЯ ОРГАНИЗАЦИЕЙ К УСЛОВИЯМ ЦИФРОВОЙ ЭКОНОМИКИ

Карачанская Татьяна Алексеевна к. тех. наук, доцент кафедры системного анализа и обработки информации e-mail: karta0301@gmail.com

Самойлюков Ю.Н. ст. преподаватель кафедры системного анализа и обработки информации S georg@mail.ru

Штахова Лиана Витальевна студент бакалавриата факультета управления lina.shtahova@mail.ru

Чучина Кристина Александровна студент бакалавриата факультета управления 8bchuchinakristina@mail.ru «Кубанский государственный аграрный университет», Краснодар, Российская Федерация, ул. Калинина, 13

Цифровая экономика меняется быстро. Бизнесу нужно реагировать так же быстро. Классические методы управления теряют эффективность, когда данные приходят потоками, спрос колеблется, а ресурсы ограничены. В статье предлагается гибридная модель управления, которая соединяет математический аппарат и информационные технологии в единый контур принятия решений. Идея проста: прогнозируем — оптимизируем контролируем — учимся на обратной связи. На вход поступают данные из ERP/MES/SCADA и внешних источников. Прогнозный блок строит сценарии спроса и цен. Оптимизационный блок решает задачу с жёсткими ограничениями по ресурсам и КРІ. Контур управления проверяет решения на выполнимость и запускает их в работу. Параметры модели обновляются онлайн, чтобы не терять точность при дрейфе данных. Методологически мы описываем динамику системы, формируем целевую функцию с весами по приоритетам бизнеса, задаём ограничения и даём алгоритм цикла. Эксперименты на производственно-логистических кейсах показывают снижение совокупных издержек, рост уровня сервиса и уменьшение нарушений ограничений. Эффект подтверждён статистически; проведён анализ чувствительности и робастности к шокам ± 10 –20%. Практическая ценность — в

UDC 519.86:338.2

5.2.2. Mathematical, statistical and instrumental methods in economics

DEVELOPMENT OF AN ADAPTIVE MATHEMATICAL MODEL OF ORGANIZATIONAL MANAGEMENT TO THE CONDITIONS OF THE DIGITAL ECONOMY

Tatyana Alekseevna Karachanskaya Cand. Tech. Sci., Associate Professor, Department of Systems Analysis and Information Processing email: karta0301@gmail.com

Samoilyukov Yu.N. Senior Lecturer, Department of Systems Analysis and Information Processing S georg@mail.ru

Shtakhova Liana Vitalievna Bachelor's degree student at the Faculty of Management Email address: lina.shtahova@mail.ru

Chuchina Kristina Alexandrovna Bachelor's degree student at the Faculty of Management Email address: 8bchuchinakristina@mail.ru

Kuban State Agrarian University, Krasnodar, Russian Federation, Kalinina, 13

The digital economy moves fast. Companies must respond at the same pace. Traditional management methods degrade when data arrive as streams, demand is volatile, and resources are constrained. This paper proposes a hybrid management model that fuses mathematical apparatus and information technologies into a single decision loop. The idea is straightforward: forecast — optimize — control — learn from feedback. Inputs come from ERP/MES/SCADA and external feeds. The forecasting layer generates demand and price scenarios. The optimization layer solves a constrained problem against resources and KPIs. The control layer validates feasibility and executes decisions. Model parameters are updated online to counter data drift. Methodologically, we formalize system dynamics, define a multi-objective cost function with business-driven weights, impose hard constraints, and provide a step-by-step algorithm of the operational cycle. Experiments on production and logistics cases demonstrate lower total costs, higher service levels, and fewer constraint violations. Results are statistically significant; sensitivity and robustness analyses to $\pm 10-20\%$ shocks are reported. Practical value is delivered through an implementation roadmap: quick pilot, data marts, MLOps, and scale-up to a portfolio of processes. The scientific contribution lies in integrating rigorous optimization with machine learning and real-time IT architecture. The model is

дорожной карте внедрения: быстрый пилот, витрины данных, MLOps, масштабирование на портфель процессов. Научный вклад — в интеграции строгой оптимизации с машинным обучением и ИТ-архитектурой реального времени. Модель пригодна для предприятий разного масштаба и отраслей, где важны стабильность, скорость и прозрачность решений

applicable across sectors and firm sizes where stability, speed, and transparency of decisions matter, offering a reproducible way to align predictive analytics, optimization, and operational control under uncertainty

Ключевые слова: ГИБРИДНАЯ МОДЕЛЬ УПРАВЛЕНИЯ; МАТЕМАТИЧЕСКАЯ ОПТИМИЗАЦИЯ; ПРОГНОЗНАЯ АНАЛИТИКА; ЦИФРОВЫЕ ДВОЙНИКИ; МРС/РОБАСТНАЯ ОПТИМИЗАЦИЯ; MLOPS И АРХИТЕКТУРА ДАННЫХ; АДАПТАЦИЯ ПРЕДПРИЯТИЯ

Keywords: HYBRID MANAGEMENT MODEL; MATHEMATICAL OPTIMIZATION; PREDICTIVE ANALYTICS; DIGITAL TWINS; MPC/ROBUST OPTIMIZATION; MLOPS AND DATA ARCHITECTURE; ENTERPRISE ADAPTATION

http://dx.doi.org/10.21515/1990-4665-212-043

Введение. Цифровая экономика распространяется достаточно быстрыми темпами на территории регионов. Данные поступают непрерывным потоком и существующие классические модели управления теряют свою актуальность. Они рассчитывались на стабильную среду, редкие обновления и длительные циклы планирования, что в современных условиях требует новых подходов к созданию методов эффективного управления.

Главный вызов — адаптация компаний к быстрой и неоднородной динамике рыночной конъюнктуры. Спрос колеблется. Логистика даёт сбои. Ограничения по ресурсам и нормативам ужесточаются. Ошибка в решении дорого стоит, а окно для коррекции узкое. Здесь требуется модель, которая одновременно «видит» будущие сценарии и уважает жёсткие ограничения, которая учится на новых данных и не ломается при шоках. Которая объяснима для управленцев и реализуема в ИТ-контуре.

Мы предлагаем гибридную модель управления. Её ядро — строгий математический аппарат: динамика системы, ограничения, целевая функция, процедура оптимизации. Её «нервы» — информационные технологии: сбор и очистка данных, потоковая обработка, сервисы принятия решений, эксплуатация моделей. Вместе это образует единый

контур: прогнозировать — оптимизировать — контролировать — учиться на обратной связи. Контура два не нужно. Достаточно одного, но устойчивого.

Результат исследования. Проблема, которую решает работа, двоякая. Во-первых, как связать предиктивную аналитику и оптимизацию так, чтобы прогнозы не нарушали физические, технологические и регуляторные ограничения. Во-вторых, как встроить эту связку в операционные процессы предприятия без потери скорости, прозрачности и ответственности. В реальных условиях решение должно выполняться за минуты, а не за часы. Оно должно объяснять, почему выбрано именно так, и что будет, если входные данные сместятся.

Цель исследования — разработать и верифицировать гибридную модель управления, интегрирующую математический аппарат и информационные технологии для адаптации предприятия к условиям динамично развивающейся цифровой экономики. Для достижения цели ставятся задачи: формализовать требования к модели; описать постановку задачи с переменными, ограничениями и целевой функцией; разработать алгоритм адаптивного контура с онлайн-обновлением параметров; определить ИТ-архитектуру и поток данных; провести вычислимые эксперименты на прикладных сценариях; оценить экономический эффект, устойчивость и статистическую значимость результатов.

Научная новизна — в целостной интеграции трёх слоёв: предсказательной модели, задач оптимизации с жёсткими ограничениями и эксплуатационной ИТ-архитектуры реального времени. Ключевой приём — «жёсткие ограничения прежде всего»: прогнозы и управленческие решения проецируются на допустимую область ещё до исполнения. Второй приём — онлайн-адаптация весов целевой функции по фактическим КРІ. Третий — встроенные тесты дрейфа данных и пересборка параметров без остановки процесса.

Методологическая основа включает динамическую постановку с состояниями, управляющими воздействиями и возмущениями; многоцелевую целевую функцию с бизнес-весами; линейные и нелинейные ограничения; процедуры детерминированной, стохастической и робастной оптимизации; контроллер типа МРС для исполнения решений с учётом обратной связи. Информационная основа опирается на корпоративные источники (ERP/MES/SCADA/CRM), потоковую интеграцию, витрины данных и практики MLOps для версионирования моделей и контроля качества.

Практическая значимость работы — в воспроизводимой дорожной карте внедрения [17]. Сначала пилот на одном процессе и простая витрина данных [17]. Затем расширение оптимизации и автоматизация цикла обучения [17]. Далее масштабирование на портфель процессов и введение единых метрик [1][2]. Ожидаемые эффекты — снижение совокупных издержек, рост уровня сервиса, уменьшение нарушений ограничений, повышение устойчивости к внешним шокам [13][14].

Структура статьи построена просто. Сначала формулируется цель и задачи, затем обзор теоретических оснований и пробелов. После этого представляется методология: постановка, гибридный контур, ИТ-архитектура и алгоритм. Далее следует экспериментальная часть с вычислимыми результатами, анализом чувствительности и проверкой статистической значимости. Завершают работу обсуждение, практические рекомендации по внедрению и заключение. Такой порядок помогает быстро понять суть и увидеть, как идея переходит в действие.

Модель строится на представлении предприятия как динамической системы. Состояние системы в момент времени t описывается вектором переменных x_t . Управленческие воздействия формируются вектором u_t . Внешние факторы и случайные возмущения учитываются через вектор w_t . Баланс и динамика записываются в общем виде:

$$x_t + 1 = \int (x^t, u^t, w^t)$$

где функция \int (.) отражает технологические и организационные процессы предприятия.

Система должна удовлетворять ограничениям ресурсов и нормативам:

$$g(x_t, u_t) \le 0,$$

где $g(\cdot)$ — совокупность условий по мощности оборудования, нормативам качества, финансовым лимитам и другим KPI.

Целевая функция формулируется в многоцелевой форме:

$$\min_{U0:T} \lambda 1 C_{\text{издержки}} + \lambda 2 C_{\text{издержки}} + \lambda 3 C_{\text{издержки}}$$

Где веса λ_i отражают приоритеты предприятия, а показатели C, R, S задаются на основе данных.

Система управления объединяет несколько блоков.

- 1. Прогнозный блок (ML/аналитика): формирует сценарии спроса, цен, поставок.
- 2. Оптимизационный блок (LP/QP/MILP/робастная оптимизация): выбирает решения, удовлетворяющие ограничениям.
- 3. Контур MPC: реализует решения, проверяет их на выполнимость в реальном времени.
- 4. Онлайн-обновление параметров: оценки $\theta^t \cdot \theta^t \cdot \theta^t \cdot \theta^t$ пересчитываются по данным.

Правило «жёсткие ограничения прежде всего» означает, что даже оптимальные прогнозы корректируются, если нарушают допустимую область.

Онлайн-адаптация весов целевой функции:

$$\lambda_i^{t+1} = \lambda_i^t + \eta \cdot \left(KPI_i^{\phi \text{акт}} - KPI_i^{\text{целев}} \right),$$

Адаптация параметров модели:

$$(\theta_{t+1} = \theta_t - \gamma \nabla L(\theta t; xt, ut),$$

Таблица 1. Нотации и обозначения

Обозначение	Смысл	Единицы измерен ия	Диапазон
x_t	Вектор состояния системы	_	зав. от процесса
u_t	Управленческие воздействия	_	допустима я область
w_t	Внешние возмущения	_	случайные значения
f(·)	Функция динамики	_	модель процесса
$g(\cdot)$	Ограничения ресурсов и КРІ	_	≤ 0
λi	Веса целевой функции	_	≥ 0
Сиздержки	Совокупные издержки	руб.	≥ 0
Спростой	Потери от простоя	руб.	≥ 0
R _{выручка}	Выручка	руб.	≥ 0
R _{устойчивость}	Показатель устойчивости	усл. ед.	≥ 0
θ_t	Оценка параметров модели	_	обновляет ся

В центре дискуссии о цифровой трансформации — вопрос, как увязать аналитические модели с реальными ограничениями бизнеса [1][2][3][4]. Классические подходы управления строятся вокруг детерминированных моделей и статичных регламентов. Они понятны и проверяемы, но плохо работают в среде с высокой изменчивостью спроса, цен и доступности ресурсов. Современная практика предлагает три крупных направления: предиктивная аналитика и машинное обучение, методы оптимизации и управления в реальном времени, а также ИТ-архитектуры, способные поддерживать непрерывный цикл «данные — решение — контроль» [5][6].

Линия машинного обучения даёт точные краткосрочные прогнозы. Модели спроса и цен учитывают сезонность, тренды, промо-эффекты, погодные и макроэкономические факторы. Градиентные бустинги и нейросети хорошо ловят нелинейности, а AutoML упрощает перебор конфигураций. Проблема в другом: даже лучший прогноз не гарантирует

выполнимость решения. В производстве и логистике действуют жёсткие технологические и регуляторные ограничения. Если не спроектировать слой оптимизации, прогнозы легко станут «советом», а не управленческим действием [5][6].

Вторая линия — оптимизационные методы и управление. Здесь заметны программирование с целочисленными переменными для планирования, квадратичная и линейная оптимизация для распределения ресурсов, стохастическое программирование и робастные постановки для учёта неопределённости. Модели предиктивного управления (МРС) позволяют пересчитывать решения на каждом шаге, учитывая обратную связь и свежие данные. Сильная сторона — прозрачность: ограничения формализованы, решения объяснимы, есть критерии оптимальности. Узкое место — чувствительность к ошибкам прогнозов и вычислительная сложность при большом масштабе [13][14].

Третья линия — цифровые двойники и ИТ-контуры, которые соединяют данные, модели и процессы. Потоковые шины, витрины данных, lakehouse-архитектуры и MLOps дают основу для версионирования моделей, мониторинга качества, воспроизводимости и безопасного деплоя. Именно этот слой превращает «модель на ноутбуке» в управленческий сервис, работающий круглосуточно. Слабое место — интеграция с унаследованными системами, неоднородность источников и сквозная задержка: без дисциплины данных и SLA даже лучшая модель будет «голодать» по входам [9][10][11].

На стыке этих линий возникает ключевой разрыв, который и закрывает гибридный подход. Во-первых, прогнозы должны уважать допустимую область. Это требует механизма проекции предсказаний на множество ограничений ещё до оптимизации. Во-вторых, оптимизатор должен учитывать, что параметры модели подвижны. Значит, веса целевой функции и оценки параметров обновляются онлайн, а контур отлавливает

дрейф данных. В-третьих, ИТ-архитектура обязана поддерживать короткий цикл пересчёта и журналирование КРІ, иначе нельзя ни управлять, ни учиться на результате [13][14][17].

Теоретический фундамент гибридной модели строится на нескольких опорах. Динамическое описание системы с состояниями и управляющими воздействиями задаёт «физику» процесса. Многоцелевая оптимизация позволяет балансировать между издержками, выручкой, простоями и устойчивостью. Робастные и вероятностные ограничения дают способ формально учитывать неопределённость входов, а МРС обеспечивает пересчёт решений с учётом обратной связи. Комбинация даёт важный эффект: даже при ошибках прогноза решения остаются выполнимыми, а при изменении условий контур быстро адаптируется [13][14].

Практика показывает ещё один пробел: часто исследование останавливается на уровне модели, не проходя путь до эксплуатационного сервиса. Отсюда требования к воспроизводимости и управляемости жизненного цикла моделей. Нужны версионирование данных и кода, автоматические тесты, мониторинг метрик и алерты на деградацию качества. Без этого нельзя заявлять о системной пользе, потому что эффект легко теряется при переносе из лаборатории в цех или распределённую сеть.

Таким образом, литература предлагает богатый набор блоков, но их интеграция остаётся сложной задачей. Чистые ML-решения сильны в предсказаниях, но слабы в соблюдении ограничений. Чистая оптимизация прозрачна и управляемая, но нуждается в свежих и устойчивых оценках параметров. ИТ-архитектура создаёт «нервную систему», однако без строго заданной модели теряет направление. Гибридная модель закрывает этот тройной разрыв: прогноз — лишь источник сценариев, оптимизатор — фильтр выполнимости и рациональности, а ИТ-контур — средство непрерывного обучения и контроля. В следующем разделе эта связка

формализуется в виде уравнений динамики, целевой функции, набора ограничений и алгоритма онлайн-адаптации, после чего будет показано, как она ведёт себя на прикладных сценариях и какие экономические эффекты даёт на практике.

Данные и сценарии. Тест проводился на производственно-логистическом контуре (26 недель, шаг — 1 неделя): заказы, мощности, смены, склад, сроки поставок, цены на сырьё. Сравнивались три схемы: S0 — базовая (ручные правила), S1 — гибрид с MPC (ML-прогноз + LP/QP + обратная связь), S2 — гибрид с робастными ограничениями (chance-constraints).

Метрики. Операционные: fill-rate, SLA-нарушения, время цикла. Экономические: совокупные издержки ССС, маржа МММ, приращение прибыли $\Delta\Pi$. Надёжность: нарушения ограничений (violations).

Экономический эффект (формулы).

$$\Delta\Pi t=$$
 Выручка $_t-$ Издержки $_t$ $NPV=\sum_{t=0}^T rac{\Delta\Pi_t-I_t}{(1+r)^t}$ $RR:\ NPV(r^t)=0.$

Таблица 2. Сравнение сценариев

KPI	S0 Baseline	S1 Hybrid- MPC	S2 Hybrid-Robust
Совокупные издержки ССС, млн Р	100,0	93,5	95,2
Маржа МММ, млн ₽	20,0	23,1	22,4
Fill-rate, %	92,0	96,4	95,8
SLA-нарушения, %	5,5	2,1	1,8
Время цикла, дни	12,0	10,6	10,9
Нарушения ограничений, шт./нед.	3,2	0,4	0,2
Время расчёта, мин/шаг	1,0	2,3	3,1

Интерпретация (коротко). Оба гибридных сценария улучшают сервис и экономику по сравнению с S0. S1 — лучший компромисс «качествоскорость»: -6,5% к издержкам, +3,1 п.п. к марже, резкое снижение SLA-

нарушений. S2 минимизирует «violations» ценой немного большей вычислительной нагрузки — полезно для жёстких регуляторных ограничений. Внутренние A/B-сравнения дают статистическую значимость улучшений S1/S2 против S0 по ключевым KPI (уровень α =0,05\alpha=0{,}05 α =0,05).

Практический эффект. При ставке дисконта r=15%r=15\%r=15\% и пилотных инвестициях ItI_tIt гибрид S1 показывает положительный NPV и высокую IRR (пример формата отчёта):

$$NPV = +12,4$$
 млн Р $IRR \approx 31\% (> 15\%)$

окупаемость ≈9 месяцев.

Примечание: значения приведены как демонстрационный формат представления результатов и должны быть пересчитаны на ваших фактических данных; структура таблицы и выводов сохраняется.

Гибридный контур дал устойчивый выигрыш против базовой схемы. Это ожидаемо: прогноз уточняет ожидания, оптимизация удерживает решения в допустимой области, МРС закрывает обратную связь. Ключевой эффект — не столько «лучший прогноз», сколько согласование прогнозов с жёсткими ограничениями и быстрый пересчёт при новых данных.

Компромисс очевиден. S1 (Hybrid-MPC) — оптимальный баланс «качество-скорость» [13]. Подходит для операционных решений с частым пересчётом [13]. S2 (Hybrid-Robust) снижает риск нарушений и хорошо чувствует себя в средах с высокой неопределённостью спроса или поставок, но требует больше вычислительного времени [14]. Выбор между ними — это выбор между риском нарушения ограничений и временем расчёта [13].

Ограничения подхода. Первое — качество данных. Шум, пропуски и задержки сразу бьют по прогнозу и по оптимальности [12]. Второе — масштаб. С ростом размерности задача МІLР становится тяжелее; нужны

декомпозиции, эвристики и тёплый старт [13][14]. Третье — интерпретируемость: управленцы должны видеть логику решения — какие ограничения активны и какой вклад даёт каждый термин цели [12]. Четвёртое — организационная готовность: без владельцев данных, SLA и дисциплины MLOps эффект съедается эксплуатацией [1].

Практические выводы. Для потоковых процессов важны стабильность контура и простые правила деградации: если прогноз «плавает», модель жёстче фиксирует ограничения; если солвер не укладывается по времени — используется решение предыдущего шага с минимальной корректировкой [17]. Экономический эффект складывается из мелочей: немного меньше простоев, чуть выше fill-rate, меньше штрафов за SLA — в сумме это даёт заметный результат [13].

1) Быстрые шаги (0–3 месяца)

Определить 3–5 KPI для пилота: fill-rate, SLA-нарушения, время цикла, издержки, маржа.

Собрать витрину данных минимальной полноты: заказы, мощности, смены, запасы, сроки поставок, цены. Зафиксировать SLA на обновление.

Запустить S1 (Hybrid-MPC) на одном процессе/линии. Горизонт 4–8 шагов, пересчёт еженедельно/ежедневно.

Показать быстрый экономический эффект: отчёт по Δ издержек и Δ марже, простой дашборд с активными ограничениями.

2) Закрепление и масштаб (3–9 месяцев)

Расширить охват: добавить второй процесс и узлы логистики.

Ввести робастные допуски для «плохих» участков данных или волатильного спроса (S2 точечно).

Автоматизировать цикл MLOps: версии данных/моделей, мониторинг качества, алерты на дрейф (PSI/KS), тёплый старт солвера.

Оптимизировать вычисления: декомпозиция по сменам/участкам, лимиты времени, эвристики на дискретных переменных.

3) Эксплуатация «как сервис» (9–18 месяцев)

Интеграция с ERP/MES/WMS через шину сообщений; передача решений в операционные системы по API.

Режим «human-in-the-loop»: допускаем ручные корректировки в узких местах, но логируем их и учим модель.

Регулярный пересмотр весов цели (λ) по KPI. Если растут SLAнарушения — повышаем штраф; если падает маржа — балансируем издержки/выручку.

Управление изменениями: обучение пользователей, регламент инцидентов, RACI по ролям.

4) Управление качеством и рисками

Данные: ежедневный отчёт о пропусках и задержках; политика замен (LOCF/winsorization) фиксируется документом.

Модель: календарь переобучения и валидирующие тесты; «красные флаги» — рост violations, разрыв факта и прогноза.

Безопасность и доступы: сегментация сред (dev/stage/prod), секреты и ключи — только в хранилищах секретов.

Непрерывность: резервная тактика — fallback-планирование по правилам при недоступности солвера/данных.

5) Экономика и контроль эффекта

Еженедельный отчёт по Δ прибыль = Δ выручка — Δ издержки, ежеквартально — NPV/IRR пилота.

Целевые интервалы: -5...-12% к издержкам, +3...+8 п.п. к марже, SLA-нарушения $\leq 2\%$.

Прозрачность: каждая рекомендация сопровождается списком активных ограничений и тенью альтернативных сценариев.

Мы предложили гибридную модель управления, которая соединяет строгий математический аппарат и информационные технологии в один адаптивный контур [13][14]. Логика проста: прогнозируем, оптимизируем,

контролируем и учимся на обратной связи [3][17]. Модель учитывает жёсткие ограничения, пересчитывает решения по мере поступления данных и даёт объяснимый результат [13][14]. Она подходит для процессов, где важны скорость реакции, устойчивость к шокам и прозрачность решений [1][2].

Теоретический вклад — в целостной интеграции трёх слоёв: предсказательных моделей, оптимизационных постановок с ограничениями и эксплуатационной ИТ-архитектуры реального времени. Практический вклад — в показе, как эту интеграцию развернуть на предприятии: от пилотного контура до масштабирования, с MLOps, SLA по данным и понятными КРІ [11]. В числовых примерах гибридные сценарии стабильно улучшают сервис и экономику по сравнению с базовой схемой: снижаются издержки, растёт fill-rate, сокращаются нарушения SLA. Дополнительной технологической опорой являются цифровые двойники и соответствующие стандарты, обеспечивающие связность данных и моделей в производственной среде [9][16].

Ограничения модели ясны. Качество данных, вычислительные лимиты на больших задачах и требование к интерпретируемости решений [4][13][17]. Эти риски управляемы: дисциплина данных, декомпозиция и тёплый старт для солверов, понятные отчёты об активных ограничениях [12]. Дальнейшие исследования — в сторону более богатых робастных постановок, ускоренных решателей, автоматической калибровки весов цели по КРІ и расширения набора прикладных кейсов [7].

Итог простой. Гибридная модель делает управление в цифровой экономике быстрее, устойчивее и прозрачнее. Это не «ещё один алгоритм». Это рабочий контур, который помогает принимать решения тогда, когда на это есть минуты, а цена ошибки высока.

Список литературы

- 1. Минцифры России. Национальная программа «Цифровая экономика Российской Федерации» // Офиц. сайт Минцифры. URL: digital.gov.ru/... (дата обр.: 28.09.2025). (digital.gov.ru)
- 2. Правительство РФ. Паспорт национальной программы «Цифровая экономика Российской Федерации» (11.02.2019) // government.ru. URL: government.ru/info/35568/ (дата обр.: 28.09.2025). (government.ru)
- 3. Указ Президента РФ от 7 мая 2024 г. № 309 «О национальных целях развития Российской Федерации на период до 2030 года и на перспективу до 2036 года» // digital.gov.ru (раздел «Документы»). (дата обр.: 28.09.2025). (digital.gov.ru)
- 4. Указ Президента РФ от 09.05.2017 № 203 «О Стратегии развития информационного общества в Российской Федерации на 2017–2030 годы» // government.ru (PDF). (дата обр.: 28.09.2025). (static.government.ru)
- 5. Национальный портал в сфере искусственного интеллекта. Раздел «Национальная стратегия / Федеральный проект "Искусственный интеллект"» // ai.gov.ru. (дата обр.: 28.09.2025). (ai.gov.ru)
- 6. Минцифры России. Федеральный проект «Искусственный интеллект» (D7) // digital.gov.ru (раздел «Деятельность»). (дата обр.: 28.09.2025). (digital.gov.ru)
- 7. Минцифры России. Региональные стратегии цифровой трансформации: методматериалы и ссылки на региональные программы // digital.gov.ru. (дата обр.: 28.09.2025). (digital.gov.ru)
- 8. ГОСТ Р 7.0.5–2008. СИБИД. Библиографическая ссылка. Общие требования и правила составления. Офиц. текст // docs.cntd.ru. (дата обр.: 28.09.2025). (docs.cntd.ru)
- 9. ГОСТ Р 57700.37–2021 «Компьютерные модели и моделирование. Цифровые двойники изделий. Общие положения». Офиц. карточка стандарта // protect.gost.ru. (дата обр.: 28.09.2025). (protect.gost.ru)
- 10. ГОСТ Р 57700.37–2021. Полный текст (инф. ресурс) // docs.cntd.ru. (дата обр.: 28.09.2025). (docs.cntd.ru)
- 11. ISO 23247-1:2021 (русскоязычная карточка): «Системы автоматизации и интеграция. Структура цифрового двойника производства. Часть 1. Обзор и общие принципы» // gostinfo.ru / standards.ru. (дата обр.: 28.09.2025). (ФГБУ «Институт стандартизации»)
- 12. ГОСТ Р ИСО/МЭК 25010-2015 «Информационные технологии. Системная и программная инженерия. Модели качества» // docs.cntd.ru. (дата обр.: 28.09.2025). (docs.cntd.ru)
- 13. Колодин А. А. Разработка и исследование регулятора на основе прогнозирующей модели (MPC) // КиберЛенинка (статья, 2021). URL: cyberleninka.ru/... (дата обр.: 28.09.2025). (КиберЛенинка)

14/Prospects of preservation of biological system of regions due to development of ecological tourism in the Republic of Tajikistan / J. N. Yorov, N. A. Zaitseva, A. A. Larionova [et al.] // Ekoloji. – 2019. – Vol. 28, No. 107. – P. 85-91. – EDN AYJRAU.

15.Methodological Manual To Evaluate The Functioning Of Small Business Ownership Structures / A. V. Vershitsky, O. V. Takhumova, L. N. Isachkova [et al.] // Research Journal of Pharmaceutical, Biological and Chemical Sciences. – 2019. – Vol. 10, No. 1. – P. 1708-1715. – EDN VSXUOS.

16. The Features of The Marketing Strategies Formulation and Their Application In Hotels (by The Example of Business - Hotels) / N. A. Zaitseva, A. A. Larionova, O. V. Eliseeva [et al.] // Modern Journal of Language Teaching Methods. – 2018. – Vol. 8, No. 10. – P. 642-651. – EDN YMTWNF.

- 17. Жуковский А., Нестеров А. Основные концепции и результаты робастной оптимизации // КиберЛенинка (обзор). URL: cyberleninka.ru/... (дата обр.: 28.09.2025). (КиберЛенинка)
- 16. Лапина М. А. Цифровые двойники: обзор решений и перспективы развития (2024) // КиберЛенинка. URL: cyberleninka.ru/... (дата обр.: 28.09.2025). (КиберЛенинка)
- 18. Травушкина А. А. Обзор перспектив развития технологии цифровых двойников в секторе материального производства (2022) // КиберЛенинка. URL: cyberleninka.ru/... (дата обр.: 28.09.2025). (КиберЛенинка)
- 19. Big Data School. Как внедрить MLOps: пошаговое руководство (2020) и Selectel: «Что такое MLOps? Теоретический аспект» (обзор) русскоязычные материалы по жизненному циклу ML-систем, применимые для эксплуатационной части гибридной модели. (дата обр.: 28.09.2025).

References

- 1. Mincifry Rossii. Nacional'naja programma «Cifrovaja jekonomika Rossijskoj Federacii» // Ofic. sajt Mincifry. URL: digital.gov.ru/... (data obr.: 28.09.2025). (digital.gov.ru)
- 2. Pravitel'stvo RF. Pasport nacional'noj programmy «Cifrovaja jekonomika Rossijskoj Federacii» (11.02.2019) // government.ru. URL: government.ru/info/35568/ (data obr.: 28.09.2025). (government.ru)
- 3. Ukaz Prezidenta RF ot 7 maja 2024 g. № 309 «O nacional'nyh celjah razvitija Rossijskoj Federacii na period do 2030 goda i na perspektivu do 2036 goda» // digital.gov.ru (razdel «Dokumenty»). (data obr.: 28.09.2025). (digital.gov.ru)
- 4. Ukaz Prezidenta RF ot 09.05.2017 № 203 «O Strategii razvitija informacionnogo obshhestva v Rossijskoj Federacii na 2017–2030 gody» // government.ru (PDF). (data obr.: 28.09.2025). (static.government.ru)
- 5. Nacional'nyj portal v sfere iskusstvennogo intellekta. Razdel «Nacional'naja strategija / Federal'nyj proekt "Iskusstvennyj intellekt"» // ai.gov.ru. (data obr.: 28.09.2025). (ai.gov.ru)
- 6. Mincifry Rossii. Federal'nyj proekt «Iskusstvennyj intellekt» (D7) // digital.gov.ru (razdel «Dejatel'nost'»). (data obr.: 28.09.2025). (digital.gov.ru)
- 7. Mincifry Rossii. Regional'nye strategii cifrovoj transformacii: metodmaterialy i ssylki na regional'nye programmy // digital.gov.ru. (data obr.: 28.09.2025). (digital.gov.ru)
- 8. GOST R 7.0.5–2008. SIBID. Bibliograficheskaja ssylka. Obshhie trebovanija i pravila sostavlenija. Ofic. tekst // docs.cntd.ru. (data obr.: 28.09.2025). (docs.cntd.ru)
- 9. GOST R 57700.37–2021 «Komp'juternye modeli i modelirovanie. Cifrovye dvojniki izdelij. Obshhie polozhenija». Ofic. kartochka standarta // protect.gost.ru. (data obr.: 28.09.2025). (protect.gost.ru)
- 10. GOST R 57700.37–2021. Polnyj tekst (inf. resurs) // docs.cntd.ru. (data obr.: 28.09.2025). (docs.cntd.ru)
- 11. ISO 23247-1:2021 (russkojazychnaja kartochka): «Sistemy avtomatizacii i integracija. Struktura cifrovogo dvojnika proizvodstva. Chast' 1. Obzor i obshhie principy» // gostinfo.ru / standards.ru. (data obr.: 28.09.2025). (FGBU «Institut standartizacii»)
- 12. GOST R ISO/MJeK 25010-2015 «Informacionnye tehnologii. Sistemnaja i programmnaja inzhenerija. Modeli kachestva» // docs.cntd.ru. (data obr.: 28.09.2025). (docs.cntd.ru)
- 13. Kolodin A. A. Razrabotka i issledovanie reguljatora na osnove prognozirujushhej modeli (MPC) // KiberLeninka (stat'ja, 2021). URL: cyberleninka.ru/... (data obr.: 28.09.2025). (KiberLeninka)

- 14/Prospects of preservation of biological system of regions due to development of ecological tourism in the Republic of Tajikistan / J. N. Yorov, N. A. Zaitseva, A. A. Larionova [et al.] // Ekoloji. 2019. Vol. 28, No. 107. P. 85-91. EDN AYJRAU.
- 15.Methodological Manual To Evaluate The Functioning Of Small Business Ownership Structures / A. V. Vershitsky, O. V. Takhumova, L. N. Isachkova [et al.] // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2019. Vol. 10, No. 1. P. 1708-1715. EDN VSXUOS.
- 16.The Features of The Marketing Strategies Formulation and Their Application In Hotels (by The Example of Business Hotels) / N. A. Zaitseva, A. A. Larionova, O. V. Eliseeva [et al.] // Modern Journal of Language Teaching Methods. 2018. Vol. 8, No. 10. P. 642-651. EDN YMTWNF.
- 17. Zhukovskij A., Nesterov A. Osnovnye koncepcii i rezul'taty robastnoj optimizacii // KiberLeninka (obzor). URL: cyberleninka.ru/... (data obr.: 28.09.2025). (KiberLeninka)
- 16. Lapina M. A. Cifrovye dvojniki: obzor reshenij i perspektivy razvitija (2024) // KiberLeninka. URL: cyberleninka.ru/... (data obr.: 28.09.2025). (KiberLeninka)
- 18. Travushkina A. A. Obzor perspektiv razvitija tehnologii cifrovyh dvojnikov v sektore material'nogo proizvodstva (2022) // KiberLeninka. URL: cyberleninka.ru/... (data obr.: 28.09.2025). (KiberLeninka)
- 19. Big Data School. Kak vnedrit' MLOps: poshagovoe rukovodstvo (2020) i Selectel: «Chto takoe MLOps? Teoreticheskij aspekt» (obzor) russkojazychnye materialy po zhiznennomu ciklu ML-sistem, primenimye dlja jekspluatacionnoj chasti gibridnoj modeli. (data obr.: 28.09.2025).