УДК 631.1,62-5

5.2.2 Математические, статистические и инструментальные методы экономики (физикоматематические науки, экономические науки)

РАЗРАБОТКА АППАРАТНО-ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ КОНТРОЛЯ И УПРАВЛЕНИЯ РАБОТОЙ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН ПРИ ВЫПОЛНЕНИИ ПОЛЕВЫХ ОПЕРАЦИЙ

Лаптев Сергей Владимирович к.ф.-м.н., доцент Кубанский государственный аграрный университет, Россия, 350044, Краснодар, Калинина 13

Лаптева Виктория Сергеевна Студент Кубанский государственный аграрный университет, Россия, 350044, Краснодар, Калинина 13

Дельнов Сергей Алексеевич Студент Кубанский государственный аграрный университет, Россия, 350044, Краснодар, Калинина 13

Основной целью проводимого исследования является разработка аппаратно-программной системы (АПС), использование которой позволить повысить эффективность контроля и управления работой сельскохозяйственных машин (самоходных и/ или прицепных) при выполнении ими полевых операций путем автоматизации. Разработанная АПС поможет повысить эффективность деятельности любого предприятия агробизнеса, использующего сельскохозяйственную технику. После разработки аппаратно-программной системы появляется возможность получения в реальном времени из облачных сервисов «умных» сельскохозяйственных машин цифровых массивов измерений о функционировании этих машин и/или навесного оборудования, формирования и автоматической передачи в бортовые системы управления «умных» машин (прицепных агрегатов) производственных карт-заданий. Разработанная АПС «Интегратор» была интегрирована в аппаратно-программную систему управления производством «История поля»

Ключевые слова: АППАРАТНО-ПРОГРАММНАЯ СИСТЕМА(АПС), АППАРАТНО-ПРОГРАММНАЯ СИСТЕМА УПРАВЛЕНИЯ ПРОИЗВОДСТВОМ, СЕЛЬСКОХОЗЯЙСТВЕННОЕ ПРЕДПРИЯТИЕ, АЛГОРИТМЫ, ПРОГРАММНЫЙ КОД

http://dx.doi.org/10.21515/1990-4665-211-003

UDC 631.1,62-5

5.2.2 Mathematical, statistical and instrumental methods of economics (physical and mathematical sciences, economic sciences)

DEVELOPMENT OF A HARDWARE AND SOFTWARE SYSTEM TO IMPROVE THE EFFICIENCY OF MONITORING AND MANAGING THE OPERATION OF AGRICULTURAL MACHINERY DURING FIELD OPERATIONS

Laptev Sergey Vladimirovich Cand.Phys.-Math.Sci., Associate Professor Kuban State Agrarian University, Russia, 350044, Krasnodar, Kalinina 13

Lapteva Victoria Sergeevna Student Kuban State Agrarian University, Russia, 350044, Krasnodar, Kalinina 13

Delnov Sergey Alekseevich Student Kuban State Agrarian University, Russia, 350044, Krasnodar, Kalinina 13

The main purpose of the research is to develop a hardware and software system (APS), the use of which will make it possible to increase the efficiency of monitoring and controlling the operation of agricultural machines (self-propelled and/ or trailed) when performing field operations by automation. The developed APS will help to increase the efficiency of any agribusiness enterprise using agricultural machinery. After the development of the hardware and software system, it becomes possible to obtain in real time digital arrays of measurements on the functioning of these machines and/or attachments from cloud services of "smart" agricultural machines, generate and automatically transfer production task maps to on-board control systems of "smart" machines (trailed units). The developed APS Integrator was integrated into the hardware and software production management system "Field History"

Keywords: HARDWARE-SOFTWARE SYSTEM (HSS), HARDWARE-SOFTWARE PRODUCTION MANAGEMENT SYSTEM, AGRICULTURAL ENTERPRISE, ALGORITHMS, SOFTWARE CODE

Для решения задач совершенствования управления работой сельскохозяйственных организаций в настоящее время имеется большое количество алгоритмов и их модификаций, разработаны готовые программные средства и информационные системы. Алгоритмы обработки информации отличаются скоростью обработки и точностью. Каждая разработка имеет свои особенности, преимущества и недостатки.

Современные предприятия, занимающиеся сельскохозяйственной деятельностью, во многих случаях имеют большие площади земель (поля, сады и другие). Для выращивания и сбора урожая в современных условиях уже невозможно использовать ручные методы. Во многих случаях необходимо использование сельскохозяйственных машин, и эффективность их использования в процессах обработки полей и сбора урожая напрямую зависит от технологий автоматизации процесса их работы.

Целью исследования является разработка новой аппаратнопрограммной системы «Интегратор», использование которой должно повысить уровень автоматизации контроля работы сельскохозяйственной техники и управления ее работой.

Объект исследования — экономическая деятельность сельскохозяйственного предприятия, использующего в своей деятельности сельскохозяйственную технику и аппаратно-программные средства управления с новейшими достижениями в области информационных, навигационных и космических технологий.

Предмет исследования — совершенствование процессов деятельности сельскохозяйственных предприятий, использующих для выращивания и сбора урожая сельскохозяйственную технику, путем автоматизации контроля выполняемых полевых операций и управления ими.

Для достижения цели исследования должны быть решены следующие основные задачи:

- получение в реальном и/или псевдореальном времени из облачных сервисов «умных» сельскохозяйственных машин цифровых массивов измерений о функционировании этих машин и/или навесного оборудования,
- формирование и автоматическая передача в бортовые системы управления «умных» машин (прицепных агрегатов) производственных карт-заданий,
- синхронизация АПС «История поля» с облачными сервисами производителей «умных» бортовых систем сельскохозяйственных машин (Глонаш Web, My J. Deere, Claas Telematic, Агротроник Ростсельмаш).

Исходя из вышеуказанной цели и задач аппаратно-программной системы «Интегратор», была выбрана её макроструктура, представленная на рисунке 1 (пунктиром обозначены модули, которые в состав АПС «Интегратор» не входят, но информационно с ней взаимодействуют).

Рисунок 1 – Макроструктура подсистемы «Интегратор»

Подсистема работает по следующему сценарию. Цикл контроля (управления) начинается с получения с заданной периодичностью, либо по запросу, массива данных, сформированного в облаке производителя сельскохозяйственной машины путём передачи в него «умной» бортовой системой: маршрут движения, текущий расход и/ или остаток топлива, обороты двигателя, скорость, усилия на бугеле (при работе с прицепным агрегатом), мгновенный расход семян (удобрений, СЗР, воды для полива и др.) и др. Значения этих данных сравниваются с заданными (эталонными), формируемыми в системе «Управление сельскохозяйственными и иными производственных карт-заданий. Далее машинами» на основе результатам сравнения определяются отклонения фактических значений параметров выполняемой полевой операции ОТ заданных (отклонений) устанавливается ИХ возникновения. Затем причина разрабатываются управляющие воздействия, устраняющие, либо минимизирующие выявленные отклонения. Эти воздействия (команды) передаются по каналам связи непосредственно на «умные» управляющие бортовые системы, либо, при отсутствии у этих систем блоков приёма и управления сельскохозяйственной машиной, выполнения команд механизатору, работающему на данной машине.

Определенный набор информации подсистемы «Интегратор» хранится в базе данных, которая спроектирована и разработана в процессе проводимого исследования.

Проектирование базы данных АПС «Интегратор»

Раздел БД подсистемы «Интегратор» предназначен для хранения следующей информации:

– Треков техники. Для каждой техники, на которой установлен терминал, фиксирующий местоположение с заданной периодичностью, в базе данных сохраняется трек в виде последовательности троек «дата-

широта-долгота». Точки трека идентифицируются номером терминала, который является уникальным среди всей регистрируемой техники.

- Информации о транспортных средствах. Для реализации функций подсистемы «Интегратор» в базе данных хранятся все необходимые сведения о транспортных средствах (гос. номер, номер терминала, инвентарный номер, сведения о производителе и модели и т. д.). Используя эти сведения, пользователь создаёт правила обработки событий (тревог).
- Информации о тревогах. Вся информация о событиях, которые интерпретируются как тревоги (нарушение заранее заданных условий выполнения производственного задания), a также выработанные рекомендации (команды), направляемые на «умные» бортовые системы сельскохозяйственной машины или непосредственно управляющему ею механизатору, сохраняется в базе данных. В частности, это дата и время обнаружения нарушения, поле, на котором обнаружена тревога, техника, с которой связано нарушение, с/х операция, во время которой была обнаружена тревога, дата и время, когда фактически произошло событие – источник тревоги, дата и время отправки тревоги (рекомендации, команды) и др.
- Данные о полях. Если тревога связана с полем, то в базе данных сохраняются сведения об этом поле, например название поля, координаты поля, площадь поля.
- Данные о сельскохозяйственных операциях. Если тревога связана с сельскохозяйственной операцией, то в базе данных сохраняются сведения о ней (тип операции, дата начала и окончания, планируемые параметры операции площадь обработки, расход топлива и т. д.).

Логическая схема раздела базы данных проектируемой системы представлена на рисунке 2.

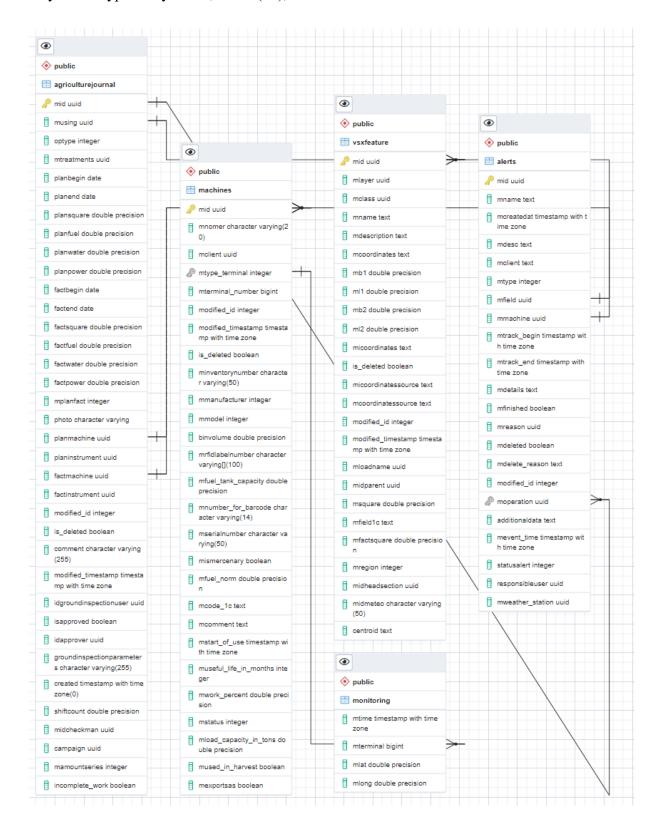


Рисунок 2 – Логическая схема БД АПС «Интегратор»

Ниже представлено подробной описание разработанных таблиц базы данных.

Таблица 1 – Описание таблицы «agriculturegournal»

«agriculturegournal» - Таблица операций		
mid	uuid	Идентификатор
musing	uuid	Идентификатор засеянного поля
optype	integer	Тип операции.
mtreatments	uuid	Идентификатор подтипа операции
planbegin	date	Дата начала планируемой операции
planend	date	Дата окончания планируемой операции
plansquare	double precision	Планируемая площадь обработки
planfuel	double precision	Планируемый расход топлива
planwater	double precision	Планируемый расход воды
planpower	double precision	Планируемый расход электроэнергии
factbegin	date	Дата начала фактической операции
factend	date	Дата окончания фактической операции
factsquare	double precision	Фактическая площадь обработки
factfuel	double precision	Фактический расход топлива
factwater	double precision	Фактический расход воды
factpower	double precision	Фактический расход электроэнергии
mplanfact	integer	Тип плана 0-планируется, 1-завершен
photo	character varying	Имя фото операции фото операций
planmachine	uuid	Идентификатор транспортного средства
planinstrument	uuid	Идентификатор орудия
factmachine	uuid	Идентификатор транспортного средства фактический
factinstrument	uuid	Идентификатор орудия фактический
modified_id	integer	Идентификатор модификации записи
is_deleted	boolean	Признак, что запись отмечена, как удалённая
comment	character varying()	Комментарий

modified_timestamp	timestamp with time zone	Время последней модификации
idgroundinspectionuser	uuid	Исполнитель наземного осмотра
isapproved	boolean	Утверждено
idapprover	uuid	Контролирующий
groundinspectionparameters	character varying()	
created	timestamp(0) with time zone	Дата создания
shiftcount	double precision	Количество смен
midcheckman	uuid	Идентификатор учетчика
campaign	uuid	Идентификатор производственной кампании
mamountseries	integer	Количество циклов/следов
incomplete_work	boolean	Признак "Не полностью выполненная работа"

Таблица 2 – Описание таблицы «alerts»

«alerts» - таблица тревог		
mid	uuid	Идентификатор сущности
mname	text	Наименование тревоги
mcreatedat	timestamp with time zone	Дата и время создания тревоги
mdesc	text	Подробное описание тревоги
mclient	text	Привязка к клиенту
mtype	integer	Тип тревоги
mfield	uuid	Поле, для которого создана тревога (может не быть, если тревога создана для сущности другого типа)
mmachine	uuid	Техника, для которой создана тревога (может не быть, если тревога создана для сущности другого типа)
mtrack_begin	timestamp with time zone	Время начала трека, связанного с тревогой
mtrack_end	timestamp with time zone	Время окончания трека, связанного с тревогой

mdetails	text	Подробная информация о тревоге
mfinished	boolean	Признак завершённой тревоги (true - событие, ставшее причиной тревоги, завершено к моменту обнаружения, false - не завершено и ещё продолжается, null - неизвестно)
mreason	uuid	Причина тревоги
mdeleted	boolean	Признак удалённой тревоги (true - тревога была удалена)
mdelete_reason	text	Причина удаления тревоги
modified_id	integer	Идентификатор модификации
moperation	uuid	С/х операция, для которой была создана тревога (может не быть, если тревога была создана для другой сущности)
additionaldata	text	Дополнительная информация.
mevent_time	timestamp with time zone	Дата и время возникновения события - источника тревоги.
statusalert	integer	Статус тревоги
responsibleuser	uuid	Идентификатор ответственного пользователя
mweather_station	uuid	Идентификатор метиостанции.

Таблица 3 – Описание таблицы «machines»

«machines» - таблица техники		
mid	Uuid	Идентификатор
mnomer	character varying()	Номер
mclient	Uuid	Идентификатор клиента
mtype_terminal	Integer	Тип терминала.0-не указано
mterminal_number	Bigint	Номер терминала
modified_id	Integer	Идентификатор модификации
modified_timestamp	timestamp with time zone	Последняя дата модификации
is_deleted	Boolean	Признак удаления
minventorynumber	character varying()	Инвентарный номер
mmanufacturer	Integer	Производитель

mmodel	Integer	Модель
binvolume	double precision	Вспомогательное значение
mrfidlabelnumber	character varying()	Список RFID меток
mfuel_tank_capacity	double precision	Объём бензобака в литрах
mnumber_for_barcode	character varying()	Номер для штрихкода
mserialnumber	character varying()	Заводской номер
mismercenary	Boolean	Признак наемного ТС
mfuel_norm	double precision	Норма расхода ГСМ (л/100км)
mcode_1c	Text	Код 1С
mcomment	Text	Комментарий
mstart_of_use	timestamp with time zone	Дата начала использования
museful_life_in_months	Integer	Срок полезного использования в месяцах
mwork_percent	double precision	Коэффициент технической годности (процент, который техника работает)
mstatus	Integer	Статус техники (рабочая, на продажу, на запчасти)
mload_capacity_in_tons	double precision	Грузоподъемность в тоннах
mused_in_harvest	Boolean	Участие в уборке
mexportsas	Boolean	Признак допустимости экспорта данных в SAS

Таблица 4 – Описание таблицы «vsxfeature»

«vsxfeature» - таблица полей			
Mid	Uuid	Идентификатор	
Mlayer	Uuid	Идентификатор подразделения	
Mclass	Uuid	Класс сущности	
Mname	Text	Название поля	
mdescription	Text	Описание	
mcoordinates	Text	Координаты	
mb1	double precision	Координаты Bbox	
ml1	double precision	Координаты Bbox	

mb2	double precision	Координаты Bbox	
ml2	double precision	Координаты Bbox	
micoordinates	Text	Координаты дырок	
is_deleted	boolean	Признак, что запись отмечена, как удалённая	
micoordinatessource	Text	Координаты дырок из источника(неоптимизированные)	
mcoordinatessource	Text	Координаты из источника(неоптимизирвоанные)	
modified_id	integer	Идентификатор модификации записи	
modified_timestamp	timestamp with time zone	Дата и время последней модификации	
mloadname	Uuid	Имя объекта при загрузке	
midparent	Uuid	Идентификатор для разделенных полей, идентификатор поля, которое было разделено	
Msquare	double precision	Площадь поля	
mfield1c	Text	Идентификатор поля из 1С	
mfactsquare	double precision	Фактическая площадь	
Mregion	integer	Идентификатор региона	
midheadsection	Uuid	Идентификатор начальника участка	
midmeteo	character varying()	Идентификатор метеостанции	
Centroid	Text	Центроид	

Таблица 5 – Описание таблицы «monitoring»

«monitoring» - таблица мониторинга техники		
Mtime	timestamp with time zone	Время
Mterminal	Bigint	Номер терминала
Mlat	double precision	Широта
Mlong	double precision	Долгота

Выбор инструмента реализации

Для реализации функций подсистемы «Интегратор» используется платформа .NET и язык программирования С# (Си шарп). Средства языка С# позволяют реализовывать алгоритмы практически любой сложности, а библиотек множества различных значительно реализацию вспомогательных функций, таких, например, как обмен данными по сети. Кроме этого, использование языка С# в связке с технологией ASP.NET позволяет создавать распределённые вебудобным графическим интерфейсом, приложения отвечающим потребностям конечного пользователя.

Для работы серверной части приложения по технологии ASP.NET используется операционная система Windows и веб-сервер IIS. Клиентская часть приложения выполняется средствами любого современного интернет-браузера, например Google Chrome.

Входные и выходные данные АПС «Интегратор»

Входными данными для ПО «Интегратор» главным образом являются треки техники, получаемые от различных облачных сервисов производителей «умных» бортовых систем с/х машин: (Глонаш Web, My J. Deere, Claas Telematic, Агротроник Ростсельмаш). Для каждого сервиса существует отдельный протокол взаимодействия, согласно которому выполняются запросы необходимого формата, а возвращаемые данные конвертируются в формат внутренней базы данных ПО «Интегратор», где сохраняются для дальнейшего использования.

Выходными данными являются тревоги — события, которые интерпретируются подсистемой как нарушения заранее заданных условий. Все тревоги после обнаружения сохраняются в базе данных, после чего над ними могут выполняться различные действия — рассылка оповещений о произошедших событиях, отображение списка тревог в графическом

пользовательском интерфейсе с целью анализа и установки причин возникновения нарушений и т. д.

Реализация алгоритмов

При разработке аппаратно-программной подсистемы «Интегратор» необходимо разработать несколько алгоритмов, а именно алгоритм контроля скоростного режима техники, алгоритм контроля выезда техники за пределы геозоны, алгоритм контроля маршрутов, алгоритм контроля движения техники без назначенного задания. Блок схема алгоритма контроля скоростного режима техники представлена на рисунке 3, контроля выезда техники за пределы геозоны — на рисунке 4, контроля маршрутов — на рисунке 5, контроля движение техники без назначенного задания — на рисунке 6.

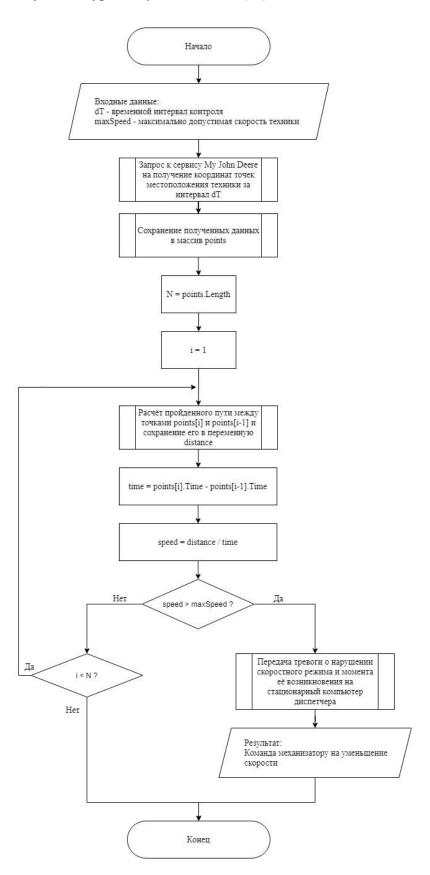


Рисунок 3 — Блок-схема алгоритма контроля скоростного режима техники

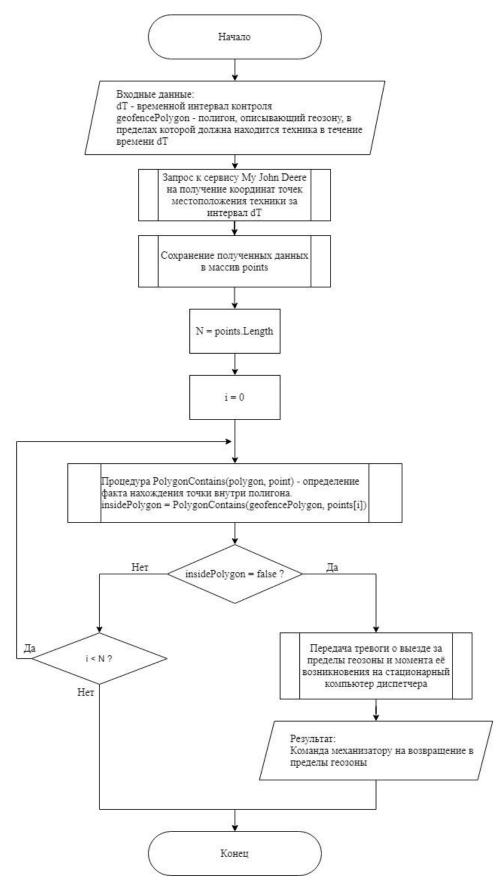


Рисунок 4 — Блок-схема алгоритма контроля выезда техники за пределы геозоны

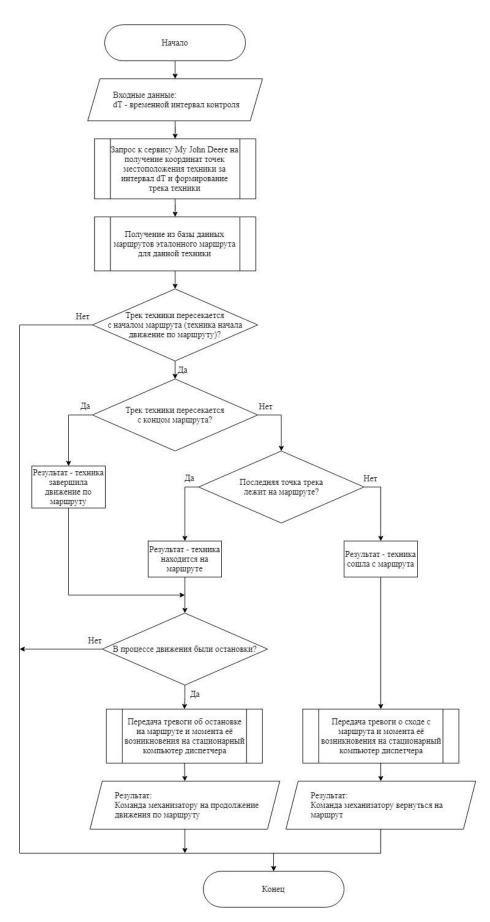


Рисунок 5 – Блок-схема алгоритма контроля маршрутов

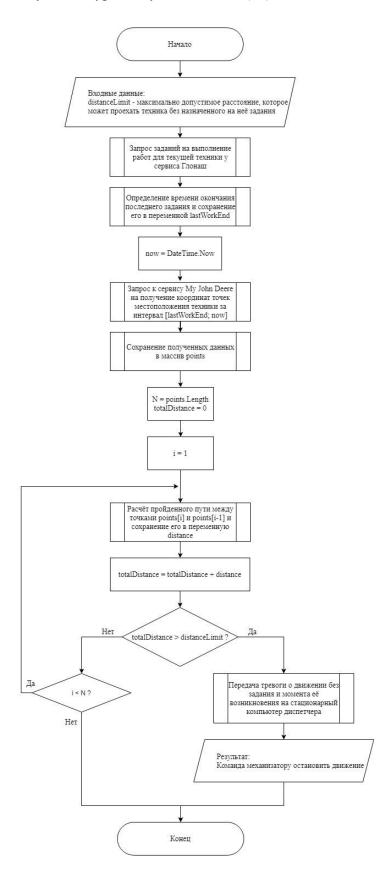


Рисунок 6 — Блок-схема алгоритма контроля движения техники без назначенного задания

http://ej.kubagro.ru/2025/07/pdf/03.pdf

Для интеграции разработанной подсистемы «Интегратор» в аппаратно-программную систему управления производством (АПСУП) «История поля» в работе были разработаны программные коды с использованием языка С#.

Критериями эффективности функционирования подсистемы «Интегратор» являются:

- Надёжность сетевого взаимодействия между подсистемой «Интегратор» и облачными сервисами производителей сельскохозяйственных машин.
- Качество формирования эталонных значений параметров машин для последующего сравнения с фактическими значениями.
- Своевременная передача управляющих воздействий,
 устраняющих или минимизирующих выявленные отклонения параметров.

В процессе проводимого исследования аппаратно-программных использование которых повышает систем, уровень автоматизации производственных процессов при решении задач контроля и управления сельскохозяйственных деятельности предприятий, использующих специализированную технику для выполнения полевых операций, были выявлены конкретные задачи, которые невозможно решить готовыми предоставляемыми наиболее распространенными средствами, автоматизированными системами управления технологией производства (АСУТП), а к которым относятся Агросигнал, «История поля», Ант, Cropio, SAS Analytics. В результате была разработана и интегрирована в АСУТП «История аппаратно-программная ПОЛЯ≫ подсистема «Интегратор».

ЛИТЕРАТУРА

- 1. Лаптев, С. В. Разработка аппаратно-программной системы для повышения эффективности деятельности сельскохозяйственных предприятий / С. В. Лаптев, В. С. Лаптева, А. А. Левашов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2025. № 209. С. 291-311. DOI 10.21515/1990-4665-209-026. EDN YSEDJI.
- 2. Математическое моделирование отношений партнеров в современных формах интеграции сельскохозяйственных товаропроизводителей и перерабатывающих предприятий / Г. А. Аршинов, В. И. Лойко, В. Г. Аршинов [и др.] // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2017. № 130. С. 1137-1159. DOI 10.21515/1990-4665-130-083. EDN WPGJEZ.
- 3. Аршинов, В. Г. Функция скорости спроса и оборот вложенного капитала в интеграционных структурах АПК / В. Г. Аршинов, С. В. Лаптев // Математические методы и информационно-технические средства : II ВСЕРОССИЙСКАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ, Краснодар, 23 июня 2006 года. Краснодар: Федеральное государственное казенное образовательное учреждение высшего профессионального образования "Краснодарский университет Министерства внутренних дел Российской Федерации", 2006. С. 7-9. EDN YSXQTJ.
- 4. Лаптев, С. В. Постановка курса "Web-технологии в идентификации систем" / С. В. Лаптев // Качество современных образовательных услуг основа конкурентоспособности вуза: сборник статей по материалам межфакультетской учебно-методической конференции / Ответственный за выпуск М. В. Шаталова : Кубанский государственный аграрный университет, 2016. С. 298-300. EDN WBILOX.
- 5. Нелинейная математическая модель ценообразования продукции перерабатывающего предприятия / В. В. Степанов, Г. А. Аршинов, С. В. Лаптев, И. А. Мануйлов // Автоматизированные информационные и электроэнергетические системы : Материалы II Межвузовской научно-практической конференции, Краснодар, 07–09 сентября 2012 года / ФГБОУ ВПО КубГТУ. Краснодар: Общество с ограниченной ответственностью "Издательский Дом Юг", 2012. С. 38-40. EDN TCIEHJ.
- 6. Аршинов, Г. А. Анализ оборота капитала и цены на готовую продукцию в интегрированных объединениях АПК / Г. А. Аршинов, С. В. Лаптев, В. Г. Аршинов // Новые технологии. -2018. -№ 4. C. 96-101. EDN YXRFNJ.
- 7. Лаптев, С. В. Разработка информационных систем на базе web-технологий: учебное пособие / С. В. Лаптев, В. Н. Лаптев, Г. А. Аршинов. Краснодар : Кубанский государственный аграрный университет им. И.Т. Трубилина, 2021.-175 с. ISBN 978-5-907430-34-1. EDN QUGCPI.
- 8. Разработка адаптивной матрицы типовых знаний для инвестиционного управления АПК1 / В. Н. Лаптев, Г. А. Аршинов, С. В. Лаптев [и др.] // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2020. № 164. С. 36-54. DOI 10.21515/1990-4665-164-003. EDN LGPWRC.

REFERENCES

1. Laptev, S. V. Razrabotka apparatno-programmnoj sistemy dlja povyshenija jeffektivnosti dejatel'nosti sel'skohozjajstvennyh predprijatij / S. V. Laptev, V. S. Lapteva, A. A. Levashov // Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo

- gosudarstvennogo agrarnogo universiteta. 2025. № 209. S. 291-311. DOI 10.21515/1990-4665-209-026. EDN YSEDJI.
- 2. Matematicheskoe modelirovanie otnoshenij partnerov v sovremennyh formah integracii sel'skohozjajstvennyh tovaroproizvoditelej i pererabatyvajushhih predprijatij / G. A. Arshinov, V. I. Lojko, V. G. Arshinov [i dr.] // Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. − 2017. − № 130. − S. 1137-1159. − DOI 10.21515/1990-4665-130-083. − EDN WPGJEZ.
- 3. Arshinov, V. G. Funkcija skorosti sprosa i oborot vlozhennogo kapitala v integracionnyh strukturah APK / V. G. Arshinov, S. V. Laptev // Matematicheskie metody i informacionno-tehnicheskie sredstva II **VSEROSSIJSKAJ**a NAUChNO-PRAKTICHESKAJa KONFERENCIJa, Krasnodar, 23 ijunja 2006 goda. – Krasnodar: obrazovateľ noe uchrezhdenie Federal'noe gosudarstvennoe kazennoe vysshego professional'nogo obrazovanija "Krasnodarskij universitet Ministerstva vnutrennih del Rossijskoj Federacii", 2006. – S. 7-9. – EDN YSXQTJ.
- 4. Laptev, S. V. Postanovka kursa "Web-tehnologii v identifikacii sistem" / S. V. Laptev // Kachestvo sovremennyh obrazovatel'nyh uslug osnova konkurentosposobnosti vuza: sbornik statej po materialam mezhfakul'tetskoj uchebno-metodicheskoj konferencii / Otvetstvennyj za vypusk M. V. Shatalova : Kubanskij gosudarstvennyj agrarnyj universitet, 2016. S. 298-300. EDN WBILOX.
- 5. Nelinejnaja matematicheskaja model' cenoobrazovanija produkcii pererabatyvajushhego predprijatija / V. V. Stepanov, G. A. Arshinov, S. V. Laptev, I. A. Manujlov // Avtomatizirovannye informacionnye i jelektrojenergeticheskie sistemy: Materialy II Mezhvuzovskoj nauchno-prakticheskoj konferencii, Krasnodar, 07–09 sentjabrja 2012 goda / FGBOU VPO KubGTU. Krasnodar: Obshhestvo s ogranichennoj otvetstvennost'ju "Izdatel'skij Dom Jug", 2012. S. 38-40. EDN TCIEHJ.
- 6. Arshinov, G. A. Analiz oborota kapitala i ceny na gotovuju produkciju v integrirovannyh ob#edinenijah APK / G. A. Arshinov, S. V. Laptev, V. G. Arshinov // Novye tehnologii. -2018. N = 4. S. 96-101. EDN YXRFNJ.
- 7. Laptev, S. V. Razrabotka informacionnyh sistem na baze web-tehnologij: uchebnoe posobie / S. V. Laptev, V. N. Laptev, G. A. Arshinov. Krasnodar : Kubanskij gosudarstvennyj agrarnyj universitet im. I.T. Trubilina, 2021. 175 s. ISBN 978-5-907430-34-1. EDN QUGCPI.
- 8. Razrabotka adaptivnoj matricy tipovyh znanij dlja investicionnogo upravlenija APK1 / V. N. Laptev, G. A. Arshinov, S. V. Laptev [i dr.] // Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. − 2020. − № 164. − S. 36-54. − DOI 10.21515/1990-4665-164-003. − EDN LGPWRC.