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propose a new mathematical paradigm that allows
combining heterogeneous data into a single heterogeneous
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properties. The proposed method is based on the
interpretation of nominal data as elements of Boolean
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numeric data as rings or fields, depending on the type of
numerical scale (interval or ratio). Particular attention is
paid to the application of this approach to the analysis of the
matrix of weighting coefficients of neural networks. A
single-layer neural network is considered as the simplest
model, where each column of the weight matrix
corresponds to a specific type of data: Boolean operations
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and arithmetic operations for numeric. In the case of
multilayer networks, a recursive data processing model is
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HOPAIKOBBIX M apU(PMETHIESCKUM OTIepanusIM s
YHCIOBBIX. B ciiydae MHOTOCIIOMHBIX CEeTel MpeiokKeHa
PEKypCHUBHAs MOJIENIb 00pa0OTKH JJAHHBIX, TIC Ha KAXKIOM
CJI0€ IPUMEHSIIOTCS aJalTHPOBAHHbBIE ANreOpandecKue
orepanuy, no3posistonre 3pPeKkTHBHO MOJETHPOBATH
B3aHMOCBSI3U MEXY Pa3HOTUITHBIMU TIPH3HAKAMH.
[MpemnosxeHHast METOJONIOTHS OTINYAETCS OT
TPaJAUIMOHHBIX TOJIX0/I0B, TAKMX KaK paboThl XeHKKHHEHA
(1994) u Pymenbxapta et al. (1986), kotopsie TpeOyroT
npeoOpa3oBaHusl BCEX MaHHBIX B YHCIOBOI hopmaT 6e3
yaéTa uX UCX0oAHO# nmpupoasl. HoBerif moaxon
obecrieunBaeT Ooee CTPOryr0 MaTeMaTHYECKYIO OCHOBY 32
CYET MCIOB30BaHUSI TEOPHHU TPYIIIL, OYJIEBBIX anreOp u
PEUIETOK, YTO OTKPHIBAET HOBBIC BO3MOXKHOCTH IS
aHaIN3a CIOKHBIX 3aBUCUMOCTE! B JaHHBIX. [[puMeHeHue
KBaHTOPOB YHUBEPCAJIBHOCTH U CYIIECTBOBAHHS TIO3BOJISICT
(hopmanu3oBath TPEOOBAHUS K KOPPEKTHOCTH CBSI3CH
MEX/Ty BXOTHBIMU TAHHBIMH M BECAMHU HEHPOCETH.
PazpaboTaHHas MOJeNbh JEMOHCTPHPYET BHICOKYIO
YHUBEPCATBLHOCTD U MPUMEHHMA B [IIKPOKOM CIEKTPE
3aj1a4, BKIIIOYast COLMOJIOTHYCCKUE HCCIICIOBAHMS,
9KOHOMHYECKHUH aHaJIN3 ¥ MAIlIHHHOE 00yJeHHe.
IpakTHyeckas 3HAYUMOCTh HCCIICIOBAHHS
TIOATBEPKIAETCS IPUMEPaMHU KOAUPOBAHHS 00YJArOLTHX
BBIOOPOK U X YCIICHIHBIM MCIIOJIB30BAHHEM B 3a7a4ax
KI1accu(UKaUK ¥ perpeccur. B yacTHOCTH, paccMOTpeH
HpHMep aHANIM3a JaHHBIX 0 KIHCHTAaX HHTCPHET-MarasiHa,
TIe IPEATI0KEHHBIE METO Il TIO3BOJIMIIN ITOBBICUTD
TOYHOCTB ITPOTHO30B 3a CYET COXpaHEeHHsI HH(OpMAINH O
cnenupuKe KOKIOro TUIA JaHHBIX. TakuM o0pazom,
pabota npenacTaBnsieT cOOOH BKJIaJ B pa3BUTHE
TEOPETHYECKUX OCHOB 00pabOTKH AaHHBIX W Ipeiiaraet
HOBBIE 3()(EKTUBHBIE HHCTPYMEHTSHI IJIs1 aHATIH3a
TeTepOreHHBIX IATACETOB B YCIOBHAX COBPEMEHHBIX
TEXHOJIOTHH UCKYCCTBEHHOTO HHTeIUIeKTa. Pa3paboTaHHBbIi
MOAXO/I PEATM30BaH B HHTEIUIEKTYAIbHOM CHCTEME
«Diiocy» 1 anpoOUPOBaH Ha OOJIBIIOM KOJIMYECTBE
HaYYHBIX HCCIIEOBAaHHUHI 110 IKOHOMHKE, TEXHHIECKUM
HayKaM, OHOJIOTHH, CEJIbCKOMY XO3SIHCTBY, ICHXOJIOTHH,
MeIULUHE, FeopH3nKe U IPYTUM HaIlIPABICHASM HAYKH, YTO
MOATBEP>KJAETCS YCIEUIHO 3alHIeHHbIMU 10
JOKTOPCKUMH H 10 KaHIUIATCKUMHU TUCCEPTALUSIMHU,
BBIITOJIHCHHBIMU U C TPUMEHCHUEM TaHHBIX TEXHOJIOTHI
MCKYCCTBEHHOTO MHTEIUIEKTa. DTO TAKKe MOATBEPKIAET
[IPAKTHYECKYIO IPUMEHUMOCTD U IIEPCIEKTUBHOCTh
JAHHOTO MOAX0/a
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CMEXHBIE AJITEBPAMYECKUE CTPYKTVYPBHI,
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M3MEPUTEJIBHBIE ILLIKAJIBI, HOMHWHAJIbHBIE
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each layer to effectively model the relationships between
different types of features. The proposed methodology
differs from traditional approaches such as the work of
Heikkinen (1994) and Rumelhart et al. (1986), which
require converting all data into a numeric format without
taking into account their original nature. The new approach
provides a more rigorous mathematical foundation through
the use of group theory, Boolean algebras, and lattices,
which opens up new possibilities for analyzing complex
data dependencies. The use of quantifiers of universality
and existence makes it possible to formalize the
requirements for the correctness of the connections between
the input data and the weights of the neural network. The
developed model demonstrates high versatility and is
applicable in a wide range of tasks, including sociological
research, economic analysis and machine learning. The
practical significance of the study is confirmed by examples
of coding training samples and their successful use in
classification and regression tasks. In particular, an example
of analyzing data on online store customers is considered,
where the proposed methods made it possible to increase
the accuracy of forecasts by storing information about the
specifics of each type of data. Thus, the work represents a
contribution to the development of the theoretical
foundations of data processing and offers new effective
tools for analyzing heterogeneous datasets in the context of
modern artificial intelligence technologies. The developed
approach is implemented in the intelligent Eidos system and
has been tested on a large number of scientific studies in
economics, technical sciences, biology, agriculture,
psychology, medicine, geophysics and other fields of
science, which is confirmed by successfully defended 10
doctoral and 10 candidate dissertations carried out using
these artificial intelligence technologies. This also confirms
the practical applicability and prospects of this approach

Keywords: GROUP THEORY, ALGEBRAIC
STRUCTURES, MEASUREMENT SCALES, NOMINAL
SCALES, ORDINAL SCALES, NUMERICAL SCALES,
MATHEMATICAL MODELS, BOOLEAN ALGEBRA,
LATTICES, DATA ANALYSIS
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1. Introduction

The article explores the possibility of applying group theory concepts to
describe and analyze subject areas containing data presented in the form of
nominal, ordinal, and numerical scales. The main properties of scales of various
types and their correspondence to mathematical structures such as groups, rings,
and fields are considered. An overview of methods for transforming scales into
forms compatible with algebraic operations is given, and practical applications of
the proposed approach to data analysis are discussed. The paper presents
mathematical models based on group theory, Boolean algebras, and lattices, as well
as their application to data analysis.

The study of data in various subject areas often relies on the use of scaling to
measure the characteristics of objects or phenomena. Nominal, ordinal, and
numerical scales are basic tools that are widely used in statistics, economics, and
other scientific disciplines. However, their properties differ significantly, which
limits the possibility of using unified mathematical approaches to analyze them.

The purpose of this paper is to explore how concepts from group theory and
related algebraic structures can be used to formally describe and analyze data
presented in different types of scales. To achieve this goal, the properties of scales,
their transformations into algebraic structures, and examples of their application are
considered. The paper also presents mathematical models based on group theory,
Boolean algebras, and lattices, as well as their application to data analysis.

2. Methods

2.1. Types of scales and their properties
2.1.1. Nominal scales

Nominal scales are categories without ordering. Example: classification of
plants into species. Such data can be interpreted as sets without operations.
Formally, a nominal scale can be represented as a set , where are categories, and no

addition or multiplication operations are defined for them.A = {a,, a,, ..., a, }q;
2.1.2. Ordinal scales

In ordinal scales, the data are ordered, but the distances between gradations
are not defined. Example: customer satisfaction ratings (low, medium, high).
Formally, an ordinal scale can be described as a partially ordered set , where the

order relation is.(P, <) <
2.1.3. Numerical scales

Numeric scales include interval scales and ratio scales. Example:
temperature (interval scale) or weight (ratio scale). An interval scale can be
described as a set with the operation of addition , where the zero point is arbitrary.
A ratio scale can be described as a field with the operations of addition and
multiplication , where the zero point is fixed.V + F +-

http://ej.kubagro.ru/2025/03/pdf/12.pdf
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2.2 Application of group theory

The following approaches were used to examine the data presented by the
scales:

1. Nominal scales:

Encoding nominal data into binary variables or True, False allows the use of
Boolean algebras.B = {0,1}

For example, the logical OR and AND operations can be written as:

xVy=max(x,y), xAy=min(x,y).
You can also use Boolean algebra operations:
xVy=x+y—x-y, XANy=x-Yy.

2. Ordinal scales:

Construction of lattices , where and are the operations of minimum and
maximum values. For example, for elements :L = (P,AV) AV x,y € P

x Ay =min(x,y), xVy=max(x,y).

Lattices provide a mathematical basis for describing ordinal data.

3. Numerical scales:

For numerical scales, the structures of groups, rings and fields were used,
where the following axioms are satisfied: (G, +)(R, +,")(F,+,")

a+b=b+a, (a+b)+c=a+b+c), a-(b+c)=a-b+a-c.
For interval scalesa ring with an addition operation is used:
a+b=b+a a+0=a.

For relationship scalesa field with addition and multiplication operations is

used:

a-b=b-a, a-1=a, a-al=1 a=0.

2.3. Mathematical models

The following structures were used for the analysis:

- Groups: Sets with certain operations of addition or multiplication that
satisfy the axioms of closure, associativity, neutrality, and inverse. For example, a
group satisfies the following conditions: (G,*)

Va,b,c€G: (axb)*c=ax(bx*xc), Je€G: axe=exa=a,
VaeEG 3FJaleG: axal=alxa=e.

- Rings and fields:

Extended structures with additional properties applicable to numerical scales.

The ring satisfies the axioms: (R, +,-)

Va,b,c€R: a+b=b+a, (@a+b)+c=a+(b+c),
a-(b+c)=a-b+a-c.

The field additionally satisfies the axioms:(F, +,-)

Va,beF: a-b=b-a, 31€F: a-1=a,
Va#0 dJa'€F: a-al=1

http://ej.kubagro.ru/2025/03/pdf/12.pdf
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3. Results

3.1 Nominal scales
The analysis showed that nominal scales cannot be directly represented as
groups due to the lack of operations. However, encoding categories using binary
variables (0 and 1) allows them to be interpreted as elements of Boolean algebras.
For example, the logical OR and AND operations can be used to combine and
intersect categories:
xXVy=x+y—x-y, XANy=x-Yy.

3.2 Ordinal scales
For ordinal scales, a lattice model has been successfully constructed where
the elements are ordered and min-max operations provide the mathematical basis.
For example, the ordering of customer satisfaction levels (low < medium < high)
can be interpreted in terms of a partial order:
Vx,yeEP, xANy<x, xVyZ=x.

3.3 Numerical scales

Interval and ratio scales can be described in terms of rings or fields. An
interval scale, such as temperature, allows addition but not multiplication (since the
zero point is arbitrary):

a+b=b+a a+0=a.

A ratio scale, such as mass, allows all operations to be used, making it

compatible with algebraic field structures:
a-b=b-a, a-1=a, a-al=1 a=0.

3.4. Examples of using scale types for coding the training sample

This section provides examples of encoding a training set using nominal,
ordinal, and numeric scales. We will look at the original training set, determine the
scales to be encoded, and show how the data can be transformed into encoded
form.

3.4.1. Initial training sample

Let's consider an example of a training sample containing data on online
store customers. Each observation includes the following characteristics:

1. Gender (nominal scale): Male, Female.

2. Satisfaction level (ordinal scale): Low, Average, High.

3. Age (numerical ratio scale): Age in years.
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4. Purchase amount (numerical scale of relations): Amount in rubles.

Purchase
Observation Floor Satisfaction level Age (years) | amount (RUB)

1 Male Short 25 1500

2 Female Average 34 2300

3 Female High 29 5000

4 Male Average 42 3400

5 Female Short 31 1200

6 Male High 27 4500

7 Female Average 38 2800

8 Male Short 22 1000

9 Female High 45 6000

10 Male Average 30 2000
3.4.2. Coding scales
Scale type Category/Meaning Encoded value
Nominal (Floor) Male 0
Nominal (Floor) Female 1
Ordinal (Satisfaction) Short 1
Ordinal (Satisfaction) Average 2
Ordinal (Satisfaction) High 3
Numeric (Age) Original meaning No changes
Numeric (Purchase Amount) Original meaning No changes

3.4.3. Encoded training set
After applying the coding scales, the training sample takes the following

form:

Purchase
Gender Satisfaction level Age amount
Observation (nominal) (ordinal) (numeric) | (numeric)

1 0 1 25 1500

2 1 2 34 2300

3 1 3 29 5000

4 0 2 42 3400

5 1 1 31 1200

6 0 3 27 4500

7 1 2 38 2800

8 0 1 22 1000

9 1 3 45 6000

10 0 2 30 2000
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3.4.4. Explanation of coding

1. Nominal scale (Gender)

- The categories "Male" and "Female" have been replaced with binary values
0 and 1, respectively. This allows the data to be used in mathematical models
where a numerical representation is required.

2. Ordinal scale (Level of satisfaction)

- Satisfaction levels have been replaced with numerical values, preserving
the order: Low — 1, Average — 2, High — 3. This allows preserving information
about the order, but not about the distance between levels (gradations reflecting the
degree of expression of the property).

3. Numerical scale of relationships (Age and Purchase amount)

- Age and purchase amount remain in their original numerical form, since
these are ratio scales where all arithmetic operations are permissible.

4. In principle, numerical values can be replaced by interval values, then
ordinal scales can be used to encode ratio scales. Then all scales will be of text
type, since nominal and ordinal scales are reduced to text type.

3.5. Application in Machine Learning

The encoded sample can be used to train machine learning models.

For example:

- Nominal scale (Gender): Can be used as a categorical feature in models
such as logistic regression or decision trees;

- Ordinal scale (Level of satisfaction): Can be used as a numerical feature
that preserves order, which is useful for ranking or classification;

- Numeric scale (Age and Purchase Amount): Can be used for regression
analysis or clustering.

3.6. Dataset as a heterogeneous algebraic structure

Based on the analysis of the article, the encoded training sample can be
represented by different algebraic structures depending on the scale type:

1. For nominal data (e.g. "Gender"):

- Boolean algebra is used

- Categories are encoded as 0 and 1, allowing the use of logical OR and
AND operations

2. For ordinal data (e.g. "Satisfaction Level™):

- Lattice structure is used

- Represented as a partially ordered set with min and max operations

3. For numeric data (e.g. Age and Purchase Amount):

- For interval scales, a ring with an addition operation is used

- For ratio scales, a field with addition and multiplication operations is used

http://ej.kubagro.ru/2025/03/pdf/12.pdf
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Thus, the entire encoded training set is a combination of different algebraic
structures:

- Boolean algebras for nominal data

- Lattice for ordinal data

- Rings or fields for numerical data

This allows a unified mathematical approach to be applied to the analysis of
different types of data.

If different types of scales (nominal, ordinal and numerical) are encountered
simultaneously in the training sample, then such a mathematical structure can be
called a “heterogeneous algebraic structure” or a “structure with mixed data types”.
This is explained by the fact that each type of scale requires its own approach to
formalization and algebraic representation:

1. Nominal scales: Represented as elements of Boolean algebra or sets
without ordering.

2. Ordinal scales: Represented as partially ordered sets or lattices.

3. Numeric scales: These are represented as rings (for interval scales) or
boxes (for ratio scales).

Thus, if all these types of data are present simultaneously, the overall
structure is a product of different algebraic structures, where each component
corresponds to a certain type of scale. Formally, this can be written as:

S=BXLXR

Where:

Boolean algebra for nominal data,B
lattice for ordinal data,L
a ring or field for numerical data.R

This structure is called a direct product of algebraic structures. It allows
working with different types of data within a single model, preserving their specific
properties.

In the context of machine learning and data analysis, such heterogeneous
structure is often transformed into a numeric format (e.g., through category
encoding or normalization of numeric values) to make it compatible with
algorithms that operate exclusively on numeric values. However, from a theoretical
point of view, it remains a complex combination of different algebraic systems.

The choice between using a ring or a field for numeric data depends on the
type of numeric scale:

1. For interval numerical scales, a ring is used:

- the interval scale allows you to perform addition operations, but not
multiplication;

- the zero point in the interval scale is arbitrary or conditional (depending on
the choice of the researcher when constructing the scale);

http://ej.kubagro.ru/2025/03/pdf/12.pdf
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- example: temperature in Celsius.

2. For numerical ratio scales, the field is used:

- the ratio scale allows you to perform both addition and multiplication
operations;

- the zero point in the ratio scale is fixed and has an absolute value;

- examples: mass, length, time.

Formally, this can be written as follows:

For the interval scale, a ring (R, +) is used, where only the addition operation
is defined.

For the ratio scale, the field (R, +, ) is used, where both addition and
multiplication operations are defined.

This distinction is important because:

1. The operation of multiplication makes sense only for numerical scales of
ratios where there is an absolute zero.

2. In interval numerical scales, one can only talk about the difference in
values, but not about their relationship.

3. In numerical ratio scales, both the difference and the ratio of values can be
compared.

Thus, the type of algebraic structure (ring or field) is determined by the
presence or absence of absolute zero in the numerical scale.

3.7. The matrix of neural network weight coefficients as a heterogeneous

algebraic structure
3.7.1. Single-layer neural network

A single-layer neural network (perceptron) is the simplest model of neural
networks, consisting of a single layer of neurons that are directly connected to the
input data. In this model, the matrix of weight coefficients has the following
features:

1. Structure of the weight matrix:

- Each element of the matrix corresponds to the connection between the input
feature and the neuron of the output layer.

- If the input data are represented by mixed scale types, then each column of
the matrix can be associated with a certain algebraic structure: - Nominal data —
Boolean algebra. - Ordinal data — lattice. - Numeric data — ring or field.

2. Operations on scales:

- Weight update operations are performed via backpropagation algorithms or
other optimization methods.

- Formally, the process of updating weights can be written as:

(t+1) _ oL

Wi Wi =1 ._aWij'
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Where:
- is the weight value at the -th iteration,wi(-t)t

]
learning speedn

- — loss function.L

3. Example: Let's consider the problem of classifying online store customers:

- Input data: Gender (nominal), Satisfaction Level (ordinal), Age and
Purchase Amount (numeric).

- The weight matrix will have three rows (according to the number of output
neurons) and four columns (according to the number of input features). Each
column corresponds to a certain type of scale.

The weight matrix of a neural network is a complex mathematical construct
that can be interpreted as a heterogeneous algebraic structure. This is because the
weights connect input data of different types (nominal, ordinal, and numeric) to
output results, forming complex relationships between them.

During the training of a neural network, the weight matrix is adapted to
minimize the prediction error. In this context, the weight matrix can be represented
as a combination of different algebraic structures:

- For nominal data: Boolean algebras or sets without ordering.

- For ordinal data: lattices or partially ordered sets.

- For numerical data: rings (for interval scales) or boxes (for ratio scales).

Matrix representation:

Let be a matrix of weight coefficients, where is the number of output
neurons, and is the number of input features. Each element of the matrix
corresponds to the connection between the -th input feature and the -th output
neuron.W € R™ "mnwy; Wji

For different types of scales, the input data can be transformed as follows:

1. Nominal data (): logical OR () and AND () operations.x; € {0,1} VA

- Example: Wl] . Xj = Wij N X]

2. Ordinal data (): min () and max () operations.x; € {1,2,..., k}minmax

- ExampleZ Wl] . X]' = mln(Wi]‘,X]‘)

3. Numeric data (): addition () and multiplication () operations.x; € R +-

- Examp|62 Wl] . X]' = Wij . X]

Quantifier representation:

The quantifier representation allows us to describe the interaction of weights
with input data through universal () and essential () quantifiers. For example: - The
universal quantifier () is used to check the correctness of all connections:v3Vv

Vi € [1, m],‘v’] € [1, n]:Wi]' € S],
where is the set of admissible values for the -th feature.S;;
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- the existential quantifier () is used to check for the presence of at least one
valid relationship:3
3i € [1,m],3j € [1,n]:wy; # 0.

3.7.1. Multilayer neural network

A multilayer neural network (e.g. a deep neural network) consists of several
hidden layers, each of which transforms the outputs of the previous layer into the
inputs of the next. In this case, the matrix of weight coefficients becomes more
complex and multidimensional.

1. Layers and weight matrices:

- Between each layer there is a weight matrix that transforms the outputs of
the previous layer into the inputs of the next.

- Let be the matrix of weights between the -th and -th layers, where is the
number of neurons in the -th layer W& € R™*M-1(] — 1)Iny]

2. Heterogeneity of structure:

- At the initial layers, the network can work with different types of initial
data (nominal, ordinal, numerical).

- At intermediate layers, data is often converted into a single numerical
format, which allows the network to be trained efficiently.

- At the output layers, the results are interpreted in accordance with the task
at hand (classification, regression, etc.).

3. Learning algorithms:

- Training a multilayer network requires the use of complex optimizers (e.g.
Adam, SGD) to adjust the weights.

- The backpropagation process is propagated through all layers, making the
weight matrix even more dynamic and adaptive.

4. Example:

Continuing with the example with online store customers: - On the first
hidden layer, transformations can be performed for each type of scale (e.g.
normalization of numerical data, encoding of categorical data).

- In subsequent layers, the data is combined into a single numerical form,

allowing the network to be trained efficiently.
Matrix representation:
Let be the output of the -th layer, where: - is the activation of the previous

layer, - is the displacement vector.z®D = WO . 0= 4 pD]a0-DHO
Then the network output can be written as:
al) = f(z) = (WD . a1 4 pW),
where is the activation function.f(-)
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Quantifier representation:
For a multilayer network, quantifiers can be used to check the correctness of
all connections between layers:

vl € [1,L],Vi€ [1,n],¥) € [Ln_s]:wj €S,

where is the set of admissible values for the weight .Si(jl)wi(jl)

Thus, the matrix of neural network weight coefficients can be interpreted as
a heterogeneous algebraic structure adapted to work with data of different types.
This approach opens up new possibilities for analyzing and modeling complex
dependencies in data.

4. Discussion (scientific novelty and practical significance of the
proposed approach)

4.1 For a single-layer neural network

— It is proposed to consider the matrix of weight coefficients of a neural
network as a heterogeneous algebraic structure, which is a direct product of various
algebraic systems:

W=BXLXR,

Where:

B— Boolean algebra for nominal data,

L— lattice for ordinal data,

R— aring or field for numerical data.

— Which, in contrast to the traditional approach (for example, the work of
Heikkinen, 1994, where data are converted exclusively into a numerical format
without taking into account their nature):

- The traditional approach ignores the specifics of each scale type and
converts all data into a single numerical format.

- The proposed approach preserves the specific properties of each data type
through the corresponding algebraic structures.

— Provides the following benefits when solving the problem:

1. Preservation of the specifics of each data type (nominal, ordinal, numeric).

2. A unified formalism for analyzing different types of data.

3. Possibility of using operations adapted to each type of data:

- For nominal data: logical AND () and OR () operations.AvV

- For ordinal data: min() and max() operations.minmax

- For numeric data: addition () and multiplication () operations.+ -

— By applying mathematical models based on group theory, Boolean
algebras and lattices:

Jns Homunanbhbix pannbix: W = {wj; € {0,1}}.
Jlnst mopsinkoBbIxX gaHEbIX: Wi, = {w;; € Z7}.
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Jnst aucnosbix nannbix: Wg = {wj; € R}.

— It is proposed to use the weight matrix of a single-layer neural network as a
heterogeneous algebraic structure, where each element of the matrix corresponds to
a certain type of data:

w® = [wgP, w®, wr)],
Where:
weights for nominal data, W."
weights for ordinal data, W

weights for numerical data.W."

— Which, in contrast to the traditional approach (e.g., the work of Rumelhart
et al., 1986, where all data is converted to numerical format before training):

- The traditional approach requires all data to be pre-converted into a
numerical format.

- The proposed approach allows working with data in their original forms,
preserving their specificity.

— Provides the following benefits when solving the problem:

1. Universality: the ability to process different types of data within one
model.

2. Saving computing resources: no need to convert data into numerical
format.

3. Increasing the accuracy of the model by storing information about the
specifics of each type of data.

— By applying mathematical operations adapted to each type of data:

7D = WO .y 4 O

Where:
- is an input vector consisting of elements of different types of scales,x

displacement vector.b(

4.2 For a multilayer neural network

— It is proposed to extend the concept of heterogeneous algebraic structure
for multilayer neural networks, where the weight matrix between each two layers is
heterogeneous:

wO = [wD wd wh
V= [ B "L »Y'R ]r
where is the layer number.l

— Which, in contrast to the traditional approach (e.g., LeCunna, 2010, which
uses a single numeric format for all data): - The traditional approach requires
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converting all data to a numeric format before training. - The proposed approach
allows working with data in its original forms at each layer.

— Provides the following benefits when solving the problem:

1. Flexibility: the ability to adapt each layer structure to the specifics of the
data.

2. Reducing information loss: preserving the properties of each type of data
at each stage of training.

3. Improving the interpretability of the model: the ability to explicitly take
into account the specifics of the data at each layer.

— By applying recurrent formulas to update weights:

70O = WO . 30-1 4 pO
a® = f(z0),
Where:

activation of the previous layer,al~
activation function.f(-)

These proposals demonstrate how the use of group theory concepts and
related algebraic structures can be applied to formally describe and analyze data of
various types in the context of neural networks. This approach provides a deeper
understanding of the data and improves the performance of machine learning
models.

5. Conclusion and findings

5.1 A Unified Formalism for Heterogeneous Data

- Traditional approach: Traditional data processing methods often use
different techniques for different types of data (e.g., categorical data is coded
separately, numeric data is normalized). This creates a gap between the analysis of
nominal, ordinal, and numeric data.

- Proposed approach:

- Representation of all types of data through a single mathematical apparatus
(Boolean algebra for nominal, lattices for ordinal, rings/fields for numerical) allows
using the same principles of analysis for all types of data.

- Formally, this can be written as a direct product of algebraic structures:

S=BXLXR,

Where

B- Boolean algebra,

L- lattice,

R- ring or field.
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5.2. Preserving the specific properties of each data type

- Traditional approach: When converting data into a numerical format (e.g.
one-hot encoding for categories), some information about the nature of the data is
lost (e.g. order in ordinal scales).

- Proposed approach:

- The use of appropriate algebraic structures preserves the specificity of each
data type:

- For nominal scales: logical OR () and AND () operations.VA

- For ordinal scales: minimum () and maximum () value operations.minmax

- For numerical scales: arithmetic operations (, ).+ -

5.3 Mathematical Rigor and Universality

- Traditional approach: Machine learning methods often rely on heuristic
rules and do not always have a rigorous mathematical basis.

- Proposed approach: - Group theory and related structures provide a
rigorous mathematical basis for data analysis. - Possibility of using universal
algorithms, such as backpropagation, taking into account the algebraic nature of the
data.

5.4. Expanding the scope of application of algorithms

- Traditional approach: Many algorithms are limited by the numerical form
of data representation.

- Proposed approach:

- Algorithms can be adapted to work with a wider range of data, for example:

- Categorical data can be processed using Boolean operations.

- Ordinal data can be used without conversion to numeric format via lattice
operations.

- Numeric data retains all its properties within rings or fields.

5.5 Supporting complex relationships

- Traditional approach: It is difficult to model interactions between different
types of data (e.g. the relationship between a categorical variable and a numerical
indicator).

- Proposed approach:

- The matrix of weight coefficients of the neural network can be interpreted
as a heterogeneous algebraic structure:

W = [WB' WL' WR]'

where each component corresponds to a specific data type:

- — weights for nominal data (Boolean algebra), Wy
weights for ordinal data (lattice),W;

- — weights for numerical data (ring/field).Wyx

- This allows us to effectively model the relationships between different
types of features.
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5.6 Quantifier representation for logical conditions

- Traditional approach: Logical conditions are usually implemented through
programming or additional functions.

- Proposed approach:

- The use of quantifiers (, ) allows us to formalize data requirements:v3

- Example for checking the correctness of the scales:

Vi € [1,m],‘v’] € [1,n]:Wij € S],

where is the set of admissible values for the -th feature.S;;

5.7. Universal adaptation for new data types

- Traditional approach: Adding a new data type requires modification of
existing algorithms.

- Proposed approach:

- A new data type can be easily integrated by defining an appropriate
algebraic structure.

- For example, for time series you can use groups with the shift()
operation.t — t + At

5.8 Combining data from different sources

- Traditional approach: It is difficult to combine data from different sources
with different types of scales.

- Proposed approach:

- Heterogeneous algebraic structure allows data to be combined naturally:

D=BULUR,

where each data element belongs to the corresponding substructure.

5.9. Optimization of the learning process

- Traditional approach: Weight optimization is performed the same way for
all data types.

- Proposed approach:

- The process of updating weights can be adapted to each algebraic structure:

- For Boolean data: use binary operations.

- For ordinal data: use lattice operations.

- For numeric data: use standard arithmetic operations.

5.10. Final conclusions

The proposed approach allows:

1. Process data of different types within a single mathematical model.

2. Maintain the specificity of each data type regardless of the types of scales
and units of measurement in numerical scales (interval and ratio).

3. Create more accurate and interpretable models.

4. Expand the scope of application of algorithms through the use of universal
mathematical constructions.
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5.10.1. Advantages of the approach

1. Formalization of data processing, represented by scales of different types.

2. Creation of a unified mathematical approach for data analysis.

3. Extending the applicability of algebraic structures.

5.10.2. Restrictions

1. Nominal and ordinal scales require transformations.

2. Models depend on the correct interpretation of the scales.

5.10.3. Appendices

1. Development of machine learning algorithms for intelligent and statistical
analysis of data in any subject area.

2. Sociological and economic research.

Thus, the proposed approach provides a deeper understanding of the data and
improves the quality of analysis, especially in problems where heterogeneous data
types are present.

The use of group theory concepts and related algebraic structures allows us
to expand analytical capabilities when working with data due to a strictly
mathematical description of the initial data and statistical and intellectual models
created on their basis. The proposed methods for transforming scales into algebraic
structures open up new prospects for analysis, especially in areas requiring strict
mathematical formalization [1-12].

This approach is implemented in the intelligent system “Eidos” [1-13].

JKenarorme MOTYT 03HAKOMHUTCS C JIAHHOM cTaThel Ha pyccKoM si3bike [28].
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