УДК 581.4:575.21(470.67)

06.01.01 Общее земледелие, растениеводство (сельскохозяйственные науки)

АНАЛИЗ СЕМЕННОЙ ПРОДУКТИВНОСТИ ALLIUM GUNIBICUM В УСЛОВИЯХ ИНТРОДУКЦИИ

¹Дибиров Магомед Дибирович к.б.н. ., доцент SPIN-код: 8999-6239 Researcher ID: K-3686-2018 ORCID: 0000-0003-0956-3769

^{1,2}Муртазалиев Рамазан Алибегович к.б.н., доцент

https://www.researchgate.net/profile/Ramazan_Murtaz

SPIN-кол: 3403-9132 ResearcherID: K-3612-2018 Scopus ID: 56910276300 ORCID:0000-0002-2895-213X

 1 Горный ботанический сад Дагестанского научного центра РАН, ²Дагестанский государственный медицинский университет.

Махачкала, Россия

В результате интродукционных исследований эндемика Дагестана Allium gunibicum в горных условиях получены данные по изменчивости семенной продуктивности. Анализ полученных данных выявил существенные различия по показателям семенной продуктивности особей (масса соцветия, масса семян, масса 100 семян, число плодов, семязачатков, семян, процент плодоцветения, коэффициент семенификации) как между собой в пределах одного года исследований, так и по годам. Показано, что с возрастанием высоты над уровнем моря места сбора материала при интродукции в одинаковых условиях средние значения признаков семенной продуктивности уменьшаются, при этом масса 100 семян возрастает. Выявлены наиболее изменчивые признаки: масса семян в соцветии, число семян в соцветии, коэффициент семенификации, и наиболее стабильные признаки: процент плодоцветения и масса 100 семян. В результате проведенного однофакторного дисперсионного анализа выявлено существенное влияние высоты над уровнем моря и экспозиции склона на изученные признаки

Ключевые слова: ALLIUM GUNIBICUM, ДАГЕСТАН, ЭНДЕМИК, ИНТРОДУКЦИЯ, ПОПУЛЯЦИЯ, СЕМЕННАЯ ПРОДУКТИВНОСТЬ, ИЗМЕНЧИВОСТЬ

DOI: http://dx.doi.org/10.21515/1990-4665-151-008

UDC 581.4:575.21(470.67)

General agriculture, crop production (agricultural sciences)

ANALYSIS OF SEED PRODUCTIVITY OF **ALLIUM GUNIBICUM IN THE CONDITIONS OF** INTRODUCTION

¹Dibirov Magomed Dibirovich Cand.Biol.Sci., associate professor RSCI SPIN-code: 8999-6239 Researcher ID: K-3686-2018 ORCID: 0000-0003-0956-3769

^{1,2}Murtazaliev Ramazan Alibegovich, Can. Sc. Biol., associate prof.

https://www.researchgate.net/profile/Ramazan_Murtaz

RSCI SPIN-code: 3403-9132 ResearcherID: K-3612-2018 Scopus ID: 56910276300 ORCID:0000-0002-2895-213X

¹Mountain Botanical Garden of DSC RAS, ²Dagestan State Medical University Makhachkala,

Russia

As the result of introduction research of Dagestan endemic Allium gunibicum under mountain conditions seed productivity variability data were obtained. An analysis of the data revealed significant difference in seed productivity performance of samples (inflorescence mass, seed mass, mass of 100 seeds, fruit number, ovules number, number of seeds, percentage of fruit bloom, seeds formation coefficient) among themselves both within one-year research and annually. The analysis showed that under the introduction with the same conditions the mean values of seed productivity characteristics decrease together with increasing of the sea level of collecting locations; at the same time, a mass of 100 seeds increases. The most variable factors were found out. They are seed mass in inflorescence, seed number in inflorescence, seeds formation coefficient. And the steadiest factors are a percentage of fruit bloom and mass of 100 seeds. As the result of the one-way analysis of variance a significant influence of the altitude above the sea level and slope disposition were discovered

Keywords: ALLIUM GUNIBICUM, DAGESTAN, ENDEMIC, INTRODUCTION, POPULATION, SEED PRODUCTION, VARIABILITY

Дагестан, по общему признанию ботаников, является районом, на территории которого наблюдается высокая интенсивность микроэволюционных процессов [1 – 3]. Сильная расчлененность рельефа, наличие географических барьеров и многообразие инверсионных явлений определило большое флористическое разнообразие и высокую степень эндемизма флоры Горного Дагестана.

В связи с этим актуальным становится вопрос исследования эндемичных, редких и исчезающих видов растений, поскольку только разностороннее изучение биологии видов, внутрипопуляционной и межпопуляционной изменчивости, тактик и стратегий выживания могут дать объективную оценку состояния ценопопуляций редких видов и организовать их действенную охрану. В силу узкой экологической специализации некоторые виды легко уязвимы и поэтому требуют к себе особого внимания [4]. Определенное значение при этом имеет изучение семенной продуктивности как основы размножения интродукции эндемичных видов. Семенная продуктивность – один из важнейших показателей адаптации вида в конкретных условиях обитания. Определение потенциальной и реальной семенной продуктивности и степени их реализации позволяет охарактеризовать репродуктивные способность возможности вида, его К самовоспроизведению ценопопуляциях. Соотношение между этими показателями – коэффициент семенификации – считается надежным показателем адаптации вида к определенным экологическим условиям и критерием успешного семенного размножения и благополучия популяции [5 – 11].

Для изучения этих процессов объектом исследований нами был выбран эндемик флоры Дагестана *Allium gunibicum*. Данный вид, и близкие к нему виды, обладают ярко выраженной изменчивостью, что и послужило причиной описания новых видов из этой группы с Кавказа [12, 13]. Однако, у разных авторов мнения в трактовке таксономического статуса

видов этой группы расходятся, что связано большей частью с изменчивостью представителей этой группы и малой изученностью [14 – 19]. В изучении таксономии и установлении филогенетических связей между видами данного рода в последние годы широко используется методы молекулярно-генетического и цитогенетического анализов [20 – 22]. Кроме того, данные методы широко используются и при классификации внутриродовых таксонов [23, 24].

В данной работе представлен анализ семенной продуктивности *Allium gunibicum* Misch. ex Grossh. при интродукции в горных условиях.

Материал и методика

Лук гунибский является локальным эндемиком и занесен в Красные книги Дагестана и России. Встречается на сухих известняковых склонах, на скалах и каменистых местах в пределах 500–2000 м над уровнем моря [16, 17, 25].

Экспериментальные исследования проводились на Гунибской экспериментальной базе (ГЭБ) Горного ботанического сада ДНЦ РАН (1750 м над ур. м.). Климатические условия района исследования характеризуются как умеренно-континентальные. Среднегодовое количество осадков составляет 620 мм, среднегодовая температура воздуха 6,6 °С, средняя температура самого теплого месяца – августа – +16,5 °С, относительная влажность воздуха 65 %. Средняя высота снежного покрова составляет 12 см, максимальная 33 см, безморозный период 167 дней. Почвы горно-луговые, тяжелосуглинистые, карбонатные, содержание гумуса составляет 3–4 % [26].

Материалом для исследований послужили семена одновозрастных особей *Allium gunibicum*, полученных путем посева семян, собранных в пределах одной ценопопуляции в каждой из следующих точек в 2013 году:

окр. сел. Могох (760 м над ур. м.), сел. Цудахар (1100 м над ур. м.) и Гунибское плато (1770 м над ур. м.).

Собранные семена были высеяны осенью этого же года на базе сада. На разных склонах (южный, восточный, северный) было посеяно по 100 семян с каждой из трех точек. Через три года (осень 2016 года) в период созревания плодов с каждого склона с 10 особей были собраны плоды всех трех ценопопуляций.

В лабораторных условиях для собранных образцов вычислялись следующие признаки: число плодов, число цветков, число семян в соцветии, масса соцветия, масса семян в соцветии, масса 100 семян (в целом для ценопопуляции), процент плодоцветения и коэффициент семенификации.

Потенциальная семенная продуктивность определялась числом семяпочек, сформировавшихся на растении. Реальная — числом вызревших семян. Процент плодоцветения отношением числа завязавших плодов к числу цветков в соцветии, выраженных в процентах. Коэффициент семенификации — отношением показателей реальной семенной продуктивности к потенциальной. Массу определяли путем взвешивания на электронных весах с точностью до мг.

Статистическая обработка полученных данных проводилась с применением дисперсионного анализа, а также с использованием пакета статистических программ Statistica v. 5.5.

Результаты и их обсуждение

Результаты исследований семенной продуктивности одновозрастных молодых генеративных особей трех изученных ценопопуляций представлены в таблице 1. Из таблицы видно, что средние значения подавляющего большинства изученных признаков уменьшаются с увеличением высоты места сбора материала.

Наиболее изменчивы признаки: масса соцветия, число семян в соцветии, масса семян в соцветии, коэффициент семенификации. Наиболее стабильны — процент плодоцветения и масса 100 семян. Экологические условия местообитаний одновозрастных молодых генеративных особей лука гунибского существенно влияют на семенную продуктивность.

Таблица 1 - Семенная продуктивность одновозрастных молодых генеративных особей трех популяций лука гунибского в условиях интродукции на Гунибском плато

№	Признаки	Экспо-	Могох (760 м)		Цудахар (1100 м)		Гуниб (1770 м)	
J12	Признаки	зиции	IVIOLUX (700 M)		цудахар (1100 м)		1 унио (1770 м)	
		энции	$X \pm Sx$	CV, %	$X \pm Sx$	CV, %	$X \pm Sx$	CV, %
1	Масса соцветия		184.8 ± 29.48	50,4	$117,0 \pm 4,96$	13,4	137.3±17,32	39,9
2	Число плодов		$24,3 \pm 1,66$	21,6	$21,1 \pm 1,22$	18,3	17.8 ± 1.43	25,4
3	Число цветков		29.2 ± 1.84	19,9	$23,3 \pm 1,30$	17,6	$20,6 \pm 1,51$	23,1
4	Число семян в		$61,0 \pm 6,34$	32,8	$41,5 \pm 2,80$	21,4	$32,3 \pm 4,80$	47,0
	соцветии	В	01,0 = 0,0 :	02,0	11,6 = 2,00		02,0 = 1,00	.,,,
5	Масса семян в	южная	79.9 ± 11.9	47,1	37.9 ± 3.64	30,4	45.0 ± 8.22	57,8
	соцветии	Š	, ,	,	, ,	,	, ,	
6	Масса 100 семян		$124,9 \pm 9,31$	23,6	$90,4 \pm 4,76$	16,7	133,3±10,82	25,7
7	Процент		$83,2 \pm 1,90$	7,2	$90,6 \pm 0,97$	3,4	$86,2 \pm 1,69$	6,2
	плодоцветения							
8	Коэффициент		0.35 ± 0.040	35,7	$0,30\pm0,023$	24,0	$0,27 \pm 0,041$	48,0
	семенификации							
1	Масса соцветия		$108,4 \pm 9,02$	26,3	$97,9 \pm 8,72$	28,2	111,6±10,03	28,4
2	Число плодов		$22,1 \pm 1,00$	14,4	$21,6 \pm 1,51$	22,1	$18,2 \pm 1,20$	20,8
3	Число цветков		$26,6 \pm 1,09$	12,9	$23,5 \pm 1,62$	21,8	$21,1 \pm 1,30$	20,8
4	Число семян в		$37,4 \pm 2,99$	25,3	$20,9 \pm 1,62$	24,5	$28,5 \pm 5,05$	56,1
	соцветии	іая						
5	Масса семян в	восточная	$32,3 \pm 3,83$	37,5	$17,2 \pm 0,92$	16,9	$26,0 \pm 5,25$	63,8
	соцветии	CL						
6	Масса 100 семян	вс	$84,9 \pm 5,14$	19,1	$83,6 \pm 2,10$	8,0	$89,4 \pm 3,44$	12,2
7	Процент		$83,2 \pm 2,20$	8,4	$91,9 \pm 1,14$	3,9	$86,3 \pm 1,16$	4,2
	плодоцветения							
8	Коэффициент		$0,23 \pm 0,014$	19,3	$0,15 \pm 0,011$	22,1	$0,22 \pm 0,030$	44,4
1	семенификации		05.6 16.62	55.0	40.0 0.51	160	71.0 5.45	24.0
1	Масса соцветия		95,6 ± 16,63	55,0	48.8 ± 2.51	16,2	$71.9 \pm 5,45$	24,0
2	Число плодов		8.9 ± 0.86	30,6	9.5 ± 0.65	21,8	13.2 ± 0.94	22,5
3	Число цветков		10.4 ± 1.01	30,8	11.0 ± 0.76	21,9	14.7 ± 1.03	22,2
4	Число семян в		$30,5 \pm 4,04$	41,9	$13,8 \pm 0,84$	19,3	$21,4 \pm 1,64$	24,2
5	Соцветии	северная	$31,7 \pm 4,84$	48,3	10.5 ± 0.70	21,2	$16,9 \pm 1,39$	25,9
3	Масса семян в	ebi	$31,7 \pm 4,84$	48,3	$10.5 \pm 0,70$	21,2	$10,9 \pm 1,39$	25,9
6	соцветии Масса 100 семян	Сев	$73,6 \pm 1,57$	17,0	$76,0 \pm 1,85$	7,7	$78,7 \pm 2,12$	8,5
6 7	Процент		$75,0 \pm 1,37$ $85,6 \pm 1,39$	5,1	$76,0 \pm 1,83$ $86,5 \pm 1,68$	6,1	$78,7 \pm 2,12$ $89,8 \pm 0,95$	3,4
'	плодоцветения		05,0 ± 1,39	3,1	$00, 3 \pm 1,08$	0,1	07,0 ± 0,73	3,4
8	Коэффициент		0.47 ± 0.035	23,6	$0,22 \pm 0,024$	34,4	0.25 ± 0.014	18,2
G	семенификации		0,47 ± 0,033	25,0	0,22 ±0,024	34,4	0,23 ± 0,014	10,2
<u> </u>	семенификации	l	<u> </u>]				

Семенная продуктивность особей при интродукции на различных склонах Гунибского плато не одинакова. Наибольшие показатели признаков семенной продуктивности характерны особей, ДЛЯ интродуцированных на южном склоне, и наименьшие – на северном. Лук гунибский в природе встречается на южных известняковых и каменистых склонах, на скалах, поэтому условия южного склона более благоприятны для реализации семенного размножения. Уровень изменчивости элементов семенной продуктивности различен. Масса соцветия, количество и масса семян на особь имеют высокий уровень изменчивости и зависят от экологических условий на различных склонах Гунибского плато. Такие же результаты нами были получены и ранее, при изучении семенной продуктивности данного вида на разных высотных уровнях [27]. Для признаков – процент плодоцветения и масса 100 семян, характерны более уровни изменчивости. Эффективность плодообразования в исследованных популяциях у лука гунибского в условиях интродукции высокая. Снижение числа завязавшихся семян ПО сравнению количеством семяпочек может быть вызвано несколькими вероятными причинами, среди которых нарушения эмбриогенеза, неблагоприятные условия внешней среды в период закладки репродуктивных органов и плодообразования, недостаточное количество опылителей, повреждение завязавшихся семян насекомыми.

В результате проведенного однофакторного дисперсионного анализа по каждому из изучаемых признаков выявлена межпопуляционная дифференциация по ряду признаков семенной продуктивности *Allium gunibicum* (табл. 2, рис. 1).

Таблица 2 – Результаты однофакторного дисперсионного анализа признаков семенной продуктивности лука гунибского в условиях интродукции на ГЭБ

№ п/п	Признаки	Источник изменчивости высота над уровнем моря (2)				
		SS	MS	F-критерий	h ²	
1.	Число плодов (шт.)	211,27	105,6	5,03*	28,7	
2.	Число цветков (шт.)	386,87	193,43	7,89**	40,8	
3.	Число семян в соцветии (шт.)	4295,27	2147,63	9,06***	44,6	
4.	Масса семян в соцветии (мг)	10108,07	5054,03	6,81**	36,7	
5.	Масса 100 семян (мг)	10344,42	5172,21	6,85**	36,9	
6.	Процент плодоцветения	276,19	138,09	5,60**	31,5	

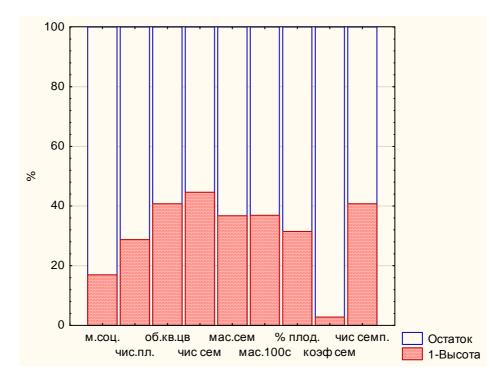


Рис. 1. Относительные компоненты дисперсии (в %) по итогам однофакторного дисперсионного анализа признаков семенной продуктивности *Allium gunibicum*.

Выяснилось, что наибольший вклад в межпопуляционную дифференциацию при интродукции на южном склоне Гунибского плато вносят признаки: число цветков, число семян в соцветии, масса семян в

соцветии, масса 100 семян и процент плодоцветения. Межпопуляционное различие по таким признакам, как масса соцветия и коэффициент семенификации недостоверно. Проведенный однофакторный дисперсионный анализ показал, что экспозиция склона существенно и высоко достоверно влияет на признаки семенной продуктивности одновозрастных особей лука гунибского (табл. 3).

Таблица 3 – Результаты однофакторного дисперсионного анализа признаков семенной продуктивности молодых генеративных особей лука гунибского (популяция «Могох») в условиях интродукции на разных склонах Гунибского плато

№	Признаки	Источник изменчивости склоны (2)			
п/п		SS	MS	F - критерий	h^2
1.	Масса соцветия (мг.)	46524,80	23262,40	5,69**	31,9
2.	Число плодов (шт.)	1387,47	693,73	46,14***	81,9
3.	Число цветков (шт.)	2075,47	1037,73	55,55***	84,5
4.	Число семян в соцветии (шт.)	5116,07	2558,03	11,73***	51,8
5.	Масса семян в соцветии (мг.)	15297,87	7648,93	12,74***	54,0
6.	Масса 100 семян (мг.)	8018,62	4009,31	8,34***	42,3
8.	Коэффициент семенификации	0,29	0,14	14,26***	57,0

Как видно из таблицы, фактор экспозиции склона достоверно влияет на такие признаки, как масса соцветия, число плодов, число цветков, число семян в соцветии, масса 100 семян, коэффициент семенификации. Вклад относительной компоненты дисперсии в общую составляет 31,9–84,5 %. Это влияние недостоверно для признака процента плодоцветения. Наибольшая доля влияния фактора приходится на число плодов и число цветков, доля влияния — 82–85 %.

Заключение

В результате исследований семенной продуктивности *Allium gunibicum* в условиях интродукции установлено, что с увеличением высоты места сбора материала, признаки семенной продуктивности уменьшаются, при этом наблюдается тенденция к увеличению массы 100 семян.

Эффективность плодообразования в исследованных популяциях у лука гунибского в условиях интродукции высокая. Популяции данного вида характеризуются относительно стабильной фактической семенной продуктивностью.

Реальная семенная продуктивность *А. gunibicum* значительно уступает потенциальной, что связано с неполной завязываемостью семян и свидетельствует о низкой степени реализации потенциальных возможностей семяобразования в условиях интродукции.

В результате проведенного однофакторного дисперсионного анализа выявлено, что в условиях интродукции высота над уровнем моря и экспозиция склона существенно влияют на большинство изученных признаков семенной продуктивности *A. gunibicum*.

Литература

- 1. Кузнецов Н.И. Нагорный Дагестан и значение его в истории развития флоры Кавказа / Кузнецов Н.И. // СПб. -1910.-48 с.
- 2. Гроссгейм А.А. Анализ флоры Кавказа / Гроссгейм А.А. // Баку. 1936. 269 с.
- 3. Еленевский А.Г. О некоторых замечательных особенностях флоры Внутреннего Дагестана / Еленевский А.Г. // Бюлл. Моск. общ. исп. прир., Отд. биол. 1966. T. 71. Вып. 5. C. 107 117.
- 4. Артамонов В.И. Редкие и исчезающие растения / Артамонов В.И. // Москва. 1989. 383 с.
- 5. Ходачек Е.А. Семенная продуктивность и урожай семян растений в тундрах Западного Таймыра / Ходачек Е.А. // Бот. журн. 1970. Т. 55. № 7. С. 995 1010.
- 6. Носова Л.И. Потенциальная семенная продуктивность *Artemisia rhodantha* Rupr. (Compositae) / Носова Л.И. // Бот. журн. 1973. Т. 58. № 6. С. 899 904.
- 7. Вайнагий И.В. Методика статистической обработки материала по семенной продуктивности растений на примере *Potentilla aurea* L. / Вайнагий И.В. // Раст. Ресурсы. 1973. Т. 9. Вып. 2. С. 287 296.

- 8. Вайнагий И.В. О методике изучения семенной продуктивности растений / Вайнагий И.В. // Бот. журн. 1974. Т. 59. \mathbb{N} 6. С. 826 831.
- 9. Тюрина Е.В. Семенная продуктивность и коэффициент семенификации сибирских видов горичника / Тюрина Е.В. // Биологические основы семеноведения, семеноводство интродуцентов. Новосибирск. 1974. С. 102 104.
- 10. Черемушкина В.А. Биология луков Евразии / Черемушкина В.А. // Новосибирск. 2004. 276 с.
- 11. Зубаирова Ш.М. Особенности семенной продуктивности *Hedysarum daghestanicum* Boiss. ex Rupr. в природных популяциях / Зубаирова Ш.М. // Фундаментальные исследовании. -2013. N 6-2. -C.352-355.
- 12. Чолокошвили Н.Б. Новый ряд *Daghestania* Tscholokaschvili из секции *Rhiziridum* Don рода *Allium* L. / Чолокошвили Н.Б. // Зам. сист. геогр. раст. 1965. Вып. 25. С. 86-102.
- 13. Михеев А.Д. Новые виды родов *Allium* L. (Alliaceae) и *Gladiolus* L. (Iridaceae) с Кавказа / Михеев А.Д. // Нов. сист. высш. раст. 2004. Т. 36. С. 96 100.
- 14. Вахтина Л.И. Цитотаксономическое изучение некоторых видов лука секции *Oreiprason* подрода *Rhizirideum* (Liliaceae) / Вахтина Л.И., Кудряшова Г.Л. // Бот. журн. -1981. -T. 66. -№ 4. -C.695 -702.
- 15. Кудряшова Г.Л. Цитотаксономическое исследование *Allium saxatile* (Alliaceae) и близких к нему видов на Кавказе и в Европейской части СССР / Кудряшова Г.Л. // Бот. журн. -1988.-T.73.-N
 otin 5.-C. 665-669.
- 16. Алибегова А.Н. Изучение *Allium gunibicum* Miscz. ex Grossh. (Alliaceae) в условиях интродукции / Алибегова А.Н., Муртазалиев Р.А. // Юг России: экология, развитие. -2008. -№ 3. C. 12 17.
- 17. Дибиров М.Д. Структура изменчивости морфологических признаков *Allium gunibicum* Miscz. ex Grossh. / Дибиров М.Д., Муртазалиев Р.А. // Труды Дагестанского отделения Русского ботанического общества. -2015. Вып. 3. С. 29-32.
- 18. Segerin A.P. Molecular and morphological revision of the *Allium saxatile* group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation / Segerin A.P., Goran A., Friesen N. // Bot. journ. of the Linn. Soc. 2015. No. 178. P. 67 101.
- 19. Дибиров М.Д. Результаты анализа изменчивости семенной продуктивности *Allium gunibicum* (Alliaceae) / Дибиров М.Д. // Ботанический вестник Северного Кавказа. -2016. N 2. C. 13 -18.
- 20. Gurushidze M. Phylogenetic relationships of wild and cultivated species of *Allium* section Cepa inferred by nuclear rDNA ITS sequence analysis / Gurushidze M., Mashayekhi S., Blattner F.R., Friesen N., Fritsch R.M. // Plant Systematics and Evolution. -2007. No. 269. P. 259 269.
- 21. Li Q.Q. Phylogeny and biogeography of *Allium* (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China / Li Q.Q., Zhou S.D., He X.J., Yu Y., Zhang Y.C., Wei X.Q. // Annals of Botany. 2010. No. 106. P. 709 733.
- 22. Fritsch R.M. A taxonomic review of *Allium* subg. *Melanocrommyum* in Iran / Fritsch R.M., M. Abbasi // Gatersleben. 2013. 240 p.
- 23. Friesen N. Phylogeny and new intragenetic classification of *Allium* L. (Alliaceae) based on nuclear rDNA ITS sequences / Friesen N., Fritsch R.M., Blattner F.R. // Aliso. 2006. No. 22. P. 372 395.
- 24. Gurushidze M. Phylogenetic analysis of *Allium* subg. *Melanocrommyum* infers cryptic species and demands a new sectional classification / Gurushidze M., Fritsch R.M., Blattner F.R. // Molecular Phylogenetics and Evolution. 2008. No. 49. P. 997 1007.

- 25. Муртазалиев Р.А. Конспект флоры Дагестана Т. 4. / Муртазалиев Р.А. // Махачкала. 2009. 232 с.
- 26. Акаев Б.А. Физическая география Дагестана. Учебное пособие / Акаев Б.А., Атаев З.В., Гаджиев Б.С. и др. // Москва. 1996. 384 с.
- 27. Дибиров М.Д. Структура изменчивости признаков семенной продуктивности *Allium gunibicum* Miscz. ex Grossh. при интродукции вдоль высотного градиента / Дибиров М.Д., Османов Р.М. //Известия Горского гос. аграр. унив-та. -2017. T. 54. № 4. C. 143 147.

References

- 1. Kusnezov N.I. Nagornyi Dagestan i znachenie ego v istorii rasvitia flory Kavkaza / Kusnezov N.I. // SPb. -1910.-48~s.
 - 2. Grossheim A.A. Analiz flory Kavkaza / Grossheim A.A. // Baku. 1936. 269 s.
- 3. Elenevskyi A.G. O nekotorykh zamechateknykh osobennostyakh flory Vnutrennego Dagestana / Elenevskyi A.G. // Bull. Mosk. Obsch. Isp. Prir., Otd. Biol. 1966. T. 71. Vyp. 5. S. 107 117.
- 4. Artamonov V.I. Redkie i ischezajuschie rastenija / Artamonov V.I. // Moskwa. 1989. 383 s.
- 5. Khodachek E.A. Semennaya produktivnost i urozhai semyan rasteniy v tundrakh Sapadnogo Taimyra / Khodachek E.A. // Botan. zhurn. − 1970. − T. 55. − № 7. − S. 995 − 1010.
- 6. Nosova L.I. Potenzialnaya semennaya produktivnost *Artemisia rhodantha* Rupr. (Compositae) / Nosova L.I. // Botan. zhurn. − 1973. − T. 58. − № 6. − S. 899 − 904.
- 7. Vaynagy I.V. Metodika statisticheskoy obrabotki materiala po semennoy produktivnosti rasteniy na primere *Potentilla aurea* L. / Vaynagy I.V. // Rastit. resursy. 1973. T. 9. Vyp. 2. S. 287 296.
- 8. Vaynagy I.V. O metodike izuchenia semennoy productivnosti rasteniy / Vaynagy I.V. // Botan. zhurn. -1974. -T. 59. $-N_{2}$ 6. -S. 826-831.
- 9. Tjurina E.V. Semenaya produktivnost i factor semenifikazii sibirskikh vidov gorichnika / Tjurina E.V. // Biologicheskie osnovy semenovedenija, semenovodstva introducentov. Novosibirsk 1974. S. 102 104.
- 10. Cheryomushkina V.A. Biologia lukov Evrasii / Cheryomushkina V.A. // Novosibirsk. 2004. 276 s.
- 11. Zubairova SH.M. Osobennosti semennoy produktivnosti *Hedysarum daghestanicum* Boiss ex Rupr. v prorodnykh populaziyakh. / Zubairova SH.M. // Fundamentalnye issledovaniya -2013.-N2 6-2. -S.352-355.
- 12. Cholokaschvili N.B. Noviy ryad *Daghestania* Tscholokaschvili iz sekzii *Rhiziridum* Don roda *Allium* L. / Tscholokaschvili N.B. // Zam. Syst. Geogr. Rast. 1965. Vyp. 25. S. 86 102.
- 13. Mikheev A.D. Novye vidy rodov *Allium* L. (Alliaceae) i *Gladiolus* L. (Iridaceae) iz Kavkaza / Mikheev A.D. // Novosti systematiki vyschikh rasteniy. 2004. T. 36. S. 96 100.
- 14. Vakhtyna L.I. Cititaxonomicheskoe izuchenie nekotorykh vidov luka iz sekzii *Oreiprason* podroda *Rhizirideum* (Liliaceae) / Vakhtyna L.I., Kudrjashova G.L. // Botan. zhurn. 1981. T. 66. N 4. S. 695 702.
- 15. Kudrjashova G.L. Cititaxonomicheskoe issledovanie *Allium saxatile* (Alliaceae) i blizkikh k nemu vidov na Kavkaze i v Evropeiskoi chasti SSSR / Kudrjashova G.L. // Botan. zhurn. -1988. T. 73. No 5. S. 665 669.

- 16. Alibegova A.N. Izuchenie *Allium gunibicum* Miscz. ex Grossh. (Alliaceae) v usloviyakh introdukzii / Alibegova A.N., Murtazaliev R.A. // Yug Rossii: ekologiya, razvitie. -2008.-N23. S. 12 17.
- 17. Dibirov M.D. Structura izmenchivosti morfologicheskikh priznakov *Allium gunibicum* Miscz. ex Grossh. / Dibirov M.D., Murtazaliev R.A. // Trudy Dagestanskogo otdelenija Russkogo botanicheskogo obschestva. 2015. Vyp. 3. S. 29 32.
- 18. Segerin A.P. Molecular and morphological revision of the *Allium saxatile* group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation / Segerin A.P., Goran A., Friesen N. // Bot. journ. of the Linn. Soc. 2015. No. 178. P. 67 101.
- 19. Dibirov M.D. Resultaty analisa izmenchivosti semennoi produktivnosti *Allium gunibicum* (Alliaceae) / Dibirov M.D. // Botan. vestnik. Severnoga Kavkaza. 2016. № 2. S. 13 18.
- 20. Gurushidze M. Phylogenetic relationships of wild and cultivated species of *Allium* section Cepa inferred by nuclear rDNA ITS sequence analysis / Gurushidze M., Mashayekhi S., Blattner F.R., Friesen N., Fritsch R.M. // Plant Systematics and Evolution. -2007. No. 269. P. 259 269.
- 21. Li Q.Q. Phylogeny and biogeography of *Allium* (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China / Li Q.Q., Zhou S.D., He X.J., Yu Y., Zhang Y.C., Wei X.Q. // Annals of Botany. 2010. No. 106. P. 709 733.
- 22. Fritsch R.M. A taxonomic review of *Allium* subg. *Melanocrommyum* in Iran / Fritsch R.M., M. Abbasi // Gatersleben. 2013. 240 p.
- 23. Friesen N. Phylogeny and new intragenetic classification of *Allium* L. (Alliaceae) based on nuclear rDNA ITS sequences / Friesen N., Fritsch R.M., Blattner F.R. // Aliso. 2006. No. 22. P. 372 395.
- 24. Gurushidze M. Phylogenetic analysis of *Allium* subg. *Melanocrommyum* infers cryptic species and demands a new sectional classification / Gurushidze M., Fritsch R.M., Blattner F.R. // Molecular Phylogenetics and Evolution. 2008. No. 49. P. 997 1007.
- 25. Murtazaliev R.A. Konspect flory Dagestana T. 4 / Murtazaliev R.A. // Makhachkala. -2009.-232~s.
- 26. Akaev B.A., Ataev Z.V., Gadjiev B.S. et al. Fizicheskaja geografija Dagestana / Akaev B.A., Ataev Z.V., Gadjiev B.S. et al. // Moskwa. 1996. 384 s.
- 27. Dibirov M. D. The structure of the variability of the signs of seed productivity of *Allium gunibicum* Miscz. ex Grossh. during the introduction along the altitude gradient / Dibirov M.D., Osmanov R.M. // Izvestiya Gorskogo gos. agrar. univ. -2017. -T. 54. -N2 4. -P. 143-147.