УДК 541.141.5+546.027

01.00.00 Физико-математические науки

НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ В МАГНИТНОМ ПОЛЕ

Мышкин Вячеслав Федорович д.ф.-м.н., доцент SPIN-код: 9675-3222 Национальный исследовательский Томский государственный университет, Томск, Россия

Хан Валерий Алексеевич д.т.н. SPIN-код: 4567-6016 Национальный исследовательский Томский атмосферы СО РАН, Томск, Россия

Милан Тихи д.ф.-м.н., профессор Национальный исследовательский Томский политехнический университет, Томск, Россия, факультет, кафедра Физики поверхности и плазмы, Чешская Республика, г. Прага

Лычагин Дмитрий Васильевич д.ф.-м.н., профессор SPIN-код: 4622-5322 Национальный исследовательский Томский государственный университет, Томск, Россия

Ленский Владимир Николаевич старший преподаватель Национальный исследовательский Томский политехнический университет, Томск, Россия

Борисов Валентин Александрович к.ф.-м.н., доцент Национальный исследовательский Томский государственный университет, Томск, Россия

Хабибулин Шамиль Александрович к.т.н. РИНЦ SPIN-код: 3166-8846 Научно-исследовательская организация СИБУР-Томскнефтехим, Томск, Россия

Побережников Андрей Дмитриевич старший преподаватель SPIN-код: 5520-6632 Национальный исследовательский Томский государственный университет, Томск, Россия UDC 541.141.5+546.027

Physics and Math

ФОРМИРОВАНИЕ МАГНИТНЫХ ЧАСТИЦ В MAGNETIC PARTICLES` FORMATION IN CONDITIONS OF THE LOW-TEMPERATURE PLASMA AND MAGNETIC FIELD

Myshkin Viacheslav Fedorovich Dr.Sci.Phys.-Math, Professor RSCI SPIN-code: 9675-3222 National Research Tomsk Polytechnic University, Tomsk, Russia

Khan Valery Alekseevich Dr.Sci.Tech., Professor RSCI SPIN-code: 4567-6016 National Research Tomsk Polytechnic University, политехнический университет, Институт оптики Institute of Atmospheric Optics SB RAS, Tomsk, Russia

Milan Tichy Dr.Sci.Phys.-Math, Professor National Research Tomsk Polytechnic University, Tomsk, Russia, Карловский университет, математико-физический Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

> Lychagin Dmitry Vasilievich Dr.Sci.Phys.-Math, Professor RSCI SPIN-code: 4622-5322 National Research Tomsk State University, Tomsk, Russia

Lenskiy Vladimir Nikolaevich senior lecturer National Research Tomsk Polytechnic University, Tomsk,_Russia

Borisov Valentin Alexandrovich Cand, Phys.-Math., assistant professor National Research Tomsk Polytechnic University, Tomsk, Russia

Khabibulin Shamil Alexandrovich Candidate in Engineering ORCID ID 0000-0003-1864-5264 Research Organization of SIBUR-Neftekhim, Tomsk, Russia

Poberezhnikov Andrey Dmitrievich senior lecturer RSCI SPIN-code: 5520-6632 National Research Tomsk Polytechnic University, Tomsk, Russia

Зачастую плазмохимические процессы связаны с использованием или образованием конденсированной дисперсной фазы. Дисперсные частицы могут изменить подвижность зарядов, а также другие параметры низкотемпературной плазмы. Цель работы - изучение влияния магнитного поля на процессы при формировании дисперсных частиц в аргон-кислородной плазме, содержащей атомы железа и углерода при атмосферном давлении. Для оптимизации состава плазмообразующего газа моделировали равновесный состав смеси, содержащей атомы железа и углерода, при температурах 1000-5000К. Показано, что при избытке кислорода частицы КДФ содержат лишь оксиды железа. Проанализированы литературные данные по процессам фазового перехода в низкотемпературной плазме, а также процессы с участием ферромагнитных частиц в постоянном магнитном поле. Приводятся результаты исследований дисперсных частиц, образующихся в was deposited on the substrates and studied by the аргон-кислородной плазме дугового разряда в магнитном поле и без поля. Образующаяся дисперсная фаза осаждалась на подложки и изучалась методом электронной микроскопией и рентгеновскими методами. Установлено, что при недостатке кислорода образующиеся из плазмы дугового разряда, содержащей железо и углерод, частицы оксида железа в магнитном поле 10 мТл имеют большие размеры, чем без магнитного поля

Ключевые слова: ДУГОВОЙ РАЗРЯД, ДИСПЕРСНАЯ ФАЗА, ОКСИДЫ ЖЕЛЕЗА, ДИСПЕРСНЫЙ УГЛЕРОД, ПАРЫ ЖЕЛЕЗА, ПАРЫ УГЛЕРОДА, МАГНИТНОЕ ПОЛЕ, ДЕСУБЛИМАЦИЯ

Doi: 10.21515/1990-4665-127-055

1 Ввеление

Низкотемпературная плазма содержит большое количество химически активных частиш радикалов. В некоторых случаях наличие неравновесного состояния позволяет реализовать процессы, не протекающие в высокотемпературном газе. Плазма широко используется для: получения наноструктур, выращивания алмазоподобных пленок, травления при формировании устройств микроэлектроники, очистки поверхности металлов, нанесения покрытий, в том числе тугоплавких. Недавние примеры использования дуги в широком диапазоне давлений для

Chemical processes are often connected with use or formation of condensed dispersed phase (CDP). Dispersed particles can change mobility of charges, as well as other parameters of the low-temperature plasma. The aim of this work is to study the effect of magnetic field on the processes of dispersed particles formation in argon-oxygen plasma containing iron and carbon atoms at atmospheric pressure. The equilibrium composition of iron and carbon atoms containing mixture simulated at temperatures of 1000-5000K for optimization of the plasma-forming gas composition. It is shown that in case of oxygen excess, the CDP particles contain only iron oxides. The literature data about the phase transition processes in a low-temperature plasma, as well as the data about the processes with participation of ferromagnetic particles in a constant magnetic field analyzed. The results of investigations of the dispersed particles forming in argon-oxygen plasma of arc discharge in the presence and in the absence of the magnetic field are shown. The formed disperse phase electron microscopy and X-ray methods. It was found that with the lack of oxygen the size of the iron-oxide particles created in the arc discharge containing iron and carbon is affected by magnetic field: in a magnetic field of 10 mT the particles are larger than in its absence

Keywords: ARC DISCHARGE, DISPERSE PHASE, IRON OXIDES, DISPERSED CARBON, IRON STEAM, CARBON STEAM, MAGNETIC FIELD, DESUBLIMATION

образования микро- и наночастиц можно найти в работах [1 - 3].

Зачастую плазмохимические процессы также связаны С использованием или образованием конденсированной дисперсной фазы (КДФ). Появление частиц КДФ оказывает существенное влияние на плазменные процессы. КДФ позволяет разделять за короткое время продукты газофазных плазменных процессов от исходных реагентов по фазовым веществ [4]. Поэтому разным состояниям актуальны исследования явлений, связанных с процессом формирования частиц КДФ в плазме.

Цель работы - изучение влияния магнитного поля на процессы при формировании КДФ в аргон-кислородной плазме, содержащей пары Fe и C при атмосферном давлении.

2 Равновесный состав в смеси Ar, N, O, Fe, C при разных температурах

С малой ошибкой можно считать, что плазма дугового сильноточного разряда при атмосферном давлении термодинамически равновесна [5].

Для моделирования равновесного состава компонентов при различных температурах использовали программу «TERRA» [6]. На рис. 1 (где В – вещество) приведены результаты расчета равновесного состава в диапазоне 1000-5000К при 10^5 Па для смеси Ar – 100, N₂ – 50, Fe – 1, C – 1, O₂ –2 моль/кг. Графики для N₂ и Ar, содержащихся в значительно большем количестве во всем диапазоне, чем остальные компоненты, не показаны.

Рисунок 1 - Температурная зависимость химического состава в смеси Fe, C, N, O, Ar Рисунок 2 – Максимальное содержание C (1) и Fe₃C (2)

Из рассмотрения состава образующихся молекул, в зависимости от

концентрации исходных веществ, видно следующее. СО₂ образуется лишь при избытке кислорода относительно Fe и C. КДФ, состоящая из смеси дисперсного углерода и оксидов железа, образуется при низких температурах. Азот незначительно влияет на количество частиц КДФ.

При увеличении концентрации O₂ увеличивается содержание CO и CO₂, и уменьшается количество дисперсного углерода. FeO, в зависимости от температуры, может находится в виде пара или дисперсных частиц. Расчетные графики имеют максимумы, температурная зависимость которых связана с составом плазмообразующей смеси.

Графики содержания максимального количества сажи и Fe₃C от концентрации кислорода в плазмообразующих смесях (Ar – 100, Fe – 1, C – 1) и (Ar – 70, N₂ – 30, Fe – 1, C – 1) для $[O_2] = 0,0-1,5$ моль/кг, приведены на рис. 2. При увеличении концентрации O_2 количество частиц КДФ уменьшается. При термодинамическом равновесии дисперсный углерод формируется лишь при содержании O_2 в плазмообразующей смеси менее 1,3 моль/кг, а Fe₃C – при содержании O_2 менее 1,5 моль/кг. Содержание Fe₃C, при этом составляет 0,058 моль/кг, а дисперсного углерода - 1 моль/кг.

3 Формирование ковалентной связи в магнитном поле

Выход парогазовой смеси из канала разряда связан с её остыванием и появлением частиц КДФ [4]. При температурах ниже 9000К образуется СО, а при температурах менее 7000К – FeO. Молекула FeO десублимируется в диапазоне 1400-1600К. При избытке O₂ образуется FeO_x [7, 8].

Конечный состав образующихся продуктов зависит также от скорости остывания плазмы при её радиальном разлете. Скорость охлаждения парогазовой смеси зависит от процессов теплообмена. Формирование и коагуляция дисперсных частиц приводит к подогреву парогазовой смеси. Известно, что условиями формирования ковалентной химической связи является принцип Паули и закон сохранения спина [9]. Вероятность образования ковалентной связи в плазменных процессах во внешнем магнитном поле, например при окислении углерода:

$$\delta = \sum_{i,j}^{n,m} [C_i] [O_j] \sigma_{ij}^{C-O} v_{ij}^{C-O} : \sum_{i,k}^{n,p} [C_i] [X_k] \sigma_{ik}^{C-X} v_{ik}^{C-X}$$
(1)

где [C_i], [O_i], [X_i] – концентрации C, O и плазменных частиц (включая C и O) с *i*-ой тепловой скоростью, σ_{ij}^{c-x} - сечение взаимодействия радикалов C и X с относительной скоростью v_{ij}^{c-x} .

Магнитное поле приводит к прецессии спинов неспаренных электронов. Нами показано, что при столкновениях в магнитном поле в результате теплового движения условиях термодинамического В равновесия спиновой системы лишь 1/3*п* часть (синглетное состояние) образованием молекул, завершается где n _ количество не перекрывающихся диапазонов фаз неопределенности углового положения при прецессии спина [10].

Радикалы, не образовавшие ковалентной связи с другими реагентами при первом столкновении, в следующем контакте могут сталкиваться с радикалами другого реагента или дисперсной частицей, с формированием или без формирования ковалентной связи. Возможно столкновение с другими плазменными частицами, не образующими с рассматриваемым радикалом ковалентной связи, что восстанавливает равновесное состояние.

Рассматриваемые выше процессы справедливы для систем, содержащих пар с небольшим пересыщением. При значительном пересыщении парогазовой смеси процессу образования ковалентной связи на поверхности частиц КДФ предшествует диффузия радикалов по их поверхности.

4 Фазовый переход в условиях плазмы

Образование зародышей и формирование дисперсных частиц в многокомпонентной системе начинается с одной компоненты, имеющей при заданных условиях меньшее давление насыщенного пара. Температура испарения графита равна 3780К, железа – 3023К. Fe₂O₃ плавится при 1912К, а при увеличении температуры разлагается. Давление насыщенного пара Fe при температуре 1900К составляет 13,3 Па, углерода при 2030К – 1,33 Па.

Скорость роста углеродных частиц ограничивается их нагревом при фазовом переходе (удельная теплота парообразования графита - 50 кДж/г). Возможна коагуляция дисперсных частиц. Выделение энергии при образовании агломерата способствует формированию частицы с единой кристаллической структурой. В работе [11] приведены константы скоростей коагуляции дисперсного углерода в различных процессах при 470-530°C.

Частота флуктуационного образования зародышей устанавливается за 10⁻⁹ с [12]. Скорость образования зародышей новой фазы в единице объема:

$$\frac{dN}{d\tau} = \frac{\gamma}{\rho} \sqrt{\frac{2m\sigma}{\pi}} \left(\frac{P}{kT}\right)^2 \exp\left(-\frac{\Delta G}{kT}\right),\tag{6}$$

где N - счетная концентрация частиц; τ - время, $k = 1,38 \ 10^{-23}$ Дж/К; $\gamma \in [0\div1,0]$ – коэффициент десублимации; m – масса молекулы пара; T – температура; P – полное давление смеси, ρ - плотность десублимата [13].

Величина γ - доля молекул пара, остающихся в результате соударений на твердой поверхности. Поверхностная энергия σ твердых частиц [14]:

$$\sigma = \frac{\Delta H - RT}{V^0} \frac{\Delta n}{n} h, \qquad (8)$$

где ΔH – изменение энтальпии при испарении; R = 8,314 Дж/(моль.К) – газовая постоянная; n – координационное число; Δn – число вакансий

атомов на поверхности твердого тела; h – толщина монослоя молекул; $V^0 = M : \rho$ – мольный объем десублимата, M – молярная масса.

Энергия образования нейтрального кластера из атомов, в котором можно явно выделить поверхность, равна [15]:

$$\Delta G_n = n \left(\mu_c - \mu_v \right) + 4\pi r^2(n) \sigma, \qquad (1)$$

где n - количество атомов в кластере, μ_c , μ_v - химические потенциалы атомов пара в конденсированной и газовой фазах соответственно, r(n) - радиус кластера из n атомов, σ - коэффициент поверхностного натяжения кластера.

Температура дисперсной частицы определяется соотношением скоростей охлаждения и нагрева при выделении энергии десублимации:

$$\frac{dT}{d\tau} = q \frac{dn}{d\tau} \frac{1}{m_d c} , \qquad (4)$$

где *n* – поток атомов на частицу КДФ, *m_d* – масса пылинки, *q* – теплота испарения 1 атома [Дж/атом], *c* – удельная теплоемкость дисперсной фазы.

Охлаждение частиц КДФ связано с излучением и теплопроводностью.

Известно, что фазовый переход возможен как на более холодной поверхности, так и в объеме [16]. Образование зародышей твердой фазы в объеме пара при его охлаждении, начинается при превышении в паре некоторого критического пересыщения S_{кр}. Появление зародышей приводит к уменьшению пересыщения, что приводит к значительному формирования В замедлению скорости зародышей. дальнейшем концентрация вещества в паровой фазе уменьшается за счет роста размеров имеющихся зародышей.

Наличие электрических зарядов на ядрах конденсации (зародышах) облегчает условия формирования и роста новой фазы.

Кинетика плазмы с КДФ рассмотрена в работе [17]. Показано, что на время релаксации электронного газа к равновесию значительное влияние оказывает релаксация заряда дисперсных частиц.

5 Экспериментальная установка

Использовали экспериментальную установку, схема которой приведена на рис. 3. Основу установки составлял герметичный цилиндр, внутренним диаметром 14 см и высотой 15 см из алюминиевого сплава. Горизонтально ориентированный катод из стали выполнен виде массивной пластины и расположен под графитовым вертикально ориентированным анодом. При электрическом токе дуги 45А напряжение на электродах составляло 27В.

Постоянное магнитное поле 10 мТл, формируемое катушкой для воздействия на плазменные процессы, ориентировано вдоль плазменного канала и способствует стабилизации положения дуги. Для этого совмещали оси соленоида и системы электродов.

Газовую смесь (N₂:Ar:O₂ – 79:3:18 по объему) подавали, при суммарном расходе 0,6 л/мин, в нижнюю часть реактора. Для возбуждения дуги механически замыкали электроды, которые автоматически раздвигались на расстояние 5-6 мм. Дисперсный порошок отбирали с внутренних стенок реактора. Радиальное распределение температуры вокруг плазменного канала дуги оценивали методом плавящихся тел.

Использовали медный провод Ø0,2 мм, располагаемый радиально к плазменному каналу дуги.

Рисунок 3 – Схема экспериментальной установки. 1 – корпус, 2 – катод, 3 – анод, 4 – соленоид, 5 – изолятор, 6 – сильфон, 7 - плазмообразующий газ, 8 – продукты реакции.

6 Экспериментальные результаты

Порошок исследовали с помощью рентгеновского дифрактометра XRD-7000S, использующей линии $K_{Cu\alpha 1}$ и $K_{Cu\alpha 2}$ (1,54051 и 1,54433 Å). Одна из дифрактограмм приведена на рис. 4. В порошке, формируемым без магнитного поля, рентгеновская дифракция обнаруживает до 95% углерода. Оксиды железа наблюдаются в незначительном количестве. Рентгенодифракционный анализ показывает наличие C (до 50%), Fe₃O₄ (до 45%), Fe₂O₃ (до 15%), FeO (менее 5%).

Рисунок 4 – Дифрактограмма порошка, образующегося из плазмы дуги (H=0 мТл)

В порошке, образующемся в постоянном магнитном поле 10 мТл. Карбиды, концентрирующиеся на электродах, в порошке не обнаруживаются как с полем, так и без поля.

На рисунке 5, *а* приведены SEM-изображения порошка, полученные с помощью растрового электронного микроскопа Tescan Vega II LMU. На микрофотографиях видны объемные конгломераты субмикронных частиц, а также некоторое количество сферических частиц размерами до 20 мкм.

Рисунок 5 – SEM-изображения порошка из плазмы дуги (H=0 мTл): *а* – изображение частиц в режиме вторичных электронов, *б* – рентгеновский спектр.

На сканирующем электронном микроскопе Tescan Vega II LMU с

использованием блока для энергодисперсионного анализа INCA Energy (INCA x-act) определяли содержание элементов. Предел обнаружения для большинства элементов составляет 0,05 – 0,1% масс., с точностью ± 2% при концентрациях более 10%. Углерод в этом случае не регистрируется. На спектре рентгеновской флюоресценции (рис. 5, *б*) регистрируются пики железа и кислорода. По относительной интенсивности 78 : 22 (для Fe : O) сдвоенные пики можно отнести к оксиду железа FeO.

Установлено, что диаметр цилиндра, имеющего температуру более 1084°С не превышает 10 мм. Эта область имеет большую яркость свечения.

7 Обсуждение экспериментальных результатов

КДФ образуются при выходе плазмообразующего газа за пределы канала разряда и его охлаждении. Пары Fe и FeO_x могут конденсироваться как на поверхности углеродных частиц, так и на зародышах из оксидов железа. Из-за высокой скорости охлаждения и выделении энергии фазового перехода также ограничиваются размеры кристаллов, содержащих атомы Fe (удельная теплота парообразования железа – 6,3 кДж/г).

Оксиды Fe_3O_4 и γ - Fe_2O_3 обладают магнитными свойствами, а α - Fe_2O_3 обладает слабыми антиферримагнитными свойствами. Без магнитного поля вероятность коагуляции частиц КДФ, определяемая их диффузией при атмосферном давлении, мала. В магнитном поле частицы FeO_x , имеющие магнитный момент, притягиваются вдоль линий напряженности магнитного поля. Поэтому ускоряется процесс агломерации ферромагнитных частиц с образованием единого кристалла. Связь времен магнитного и диффузионно-броуновского сближений ферромагнитных частиц [18]:

$$\frac{t_{M}}{t_{\phi}} = \frac{0.67 \, kT}{\mu_{0} R_{\phi}^{5} H_{0}^{2} (N_{\nu 0})^{2/3}} \frac{\chi_{\phi i} + 3}{\chi_{\phi i}^{2}}.$$
(11)

Можно частицы FeO_x, образующиеся без предположить, ЧТО магнитного поля, имеют меньшие размеры, чем способен обнаруживать Магнитное метол рентгеновской дифракции. поле способствует образованию более крупных частиц (FeO_x)_n. Нагрев при выделении энергии десублимации способствует формированию единого кристалла (отжиг). Поэтому при рентгенодифракционном анализе порошка, получаемого в магнитном поле, регистрируется как углерод, так и оксиды железа.

8 Заключение

Экспериментально установлено, что внешнее магнитное поле процессы при оказывает значительное влияния на формировании дисперсной фазы в охлаждающейся аргон-кислородной плазме с парами С Fe. Показано. И ЧТО BO внешнем постоянном магнитном поле образующиеся микрокристаллы оксидов железа имеют большие размеры, чем без магнитного поля.

При выполнении исследований использовались электронный микроскоп ЦКП «АЦГПС» ТГУ и рентгеновский дифрактометр ЦКП ТПУ.

Исследования поддержаны грантом РФФИ 16-08-00246.

СПИСОК ЛИТЕРАТУРЫ

1. Senthilkumar K., Senthilkumar O., Morito S. etc., J Nanopart Res, 14 (2012) 1205.

2. Batryshev D.G., Ramazanov T.S., Dosbolayev M.K. etc., IEEE Transactions on Plasma Science, **44** (5) 2016 P.870.

3. J. Ng, Y. Raitses, Carbon, 77 (2014) P.80-88.

4. Myshkin V.F., Khan V.A., Plekhanov V.G. etc., Russian Physics Journal, **57** (10) 2015 P.1442-1448.

5. Gleizes A., Kafrounif H., Dang Duc H., etc., Phys. D: Appl. Phys., **15** (1982) P.1031-1045.

6. Карпенко Е.И., Мессерле В.Е., Трусов Б.Г. и др., Гор. и плазмох., **1** (4) 2003 С.291-310.

7. Фортов В.Е., Храпак А.Г., Якубов И.Т. Физика неидеальной плазмы. Учебн. пособие. - М.: Физикатлит, 2004. - 524 с.

8. Смирнов Б.М., УФН, **170** (5) 2000 С.495-534.

9. Зельдович Я.Б., Бучаченко А. Л., Франкевич Е. Л. // УФН 155 (1) 1988 С.3-45.

10. http://ej.kubagro.ru/2016/09/pdf/123.pdf

11. Шопин В.М., Российский химический журнал, 60 (4) 2007 С.104-110.

12. Павлов В. А., Скрипов В. П., ТВТ, (8) 1976 С.579-585.

13. Амелин А.Г. Теоретические основы образования тумана при конденсации пара. – М.: Химия, 1972. – 304 с.

14. Горелик А.Г., Амитин А.В. Десублим. в хим. промышл. - М.: Химия, 1986. - 272 с.

15. Анисимов М.П., Успехи химии, 72 (7) 2003 С.664-705.

16. Perekrestov R, Kudrna P, Tichý M. etc., J. Phys. D: Appl. Phys., **49** (2016) 265201 (11pp).

17. Жуховицкий Д.И., Храпак А.Г., Якубов И.Т. Ионизационное равновесие в плазме с конденсированной дисперсной фазой. Химия плазмы / Под ред. Б.М. Смирнова. М.: Энергоатомиздат, 1984, №11, С. 130-170.

18. Булыжев Е.М., Меньшов Е.Н., Известия Самарского НЦ РАН, 16 (1) 2014 С.247-254.

REFERENCES

1. Senthilkumar K., Senthilkumar O., Morito S. etc., J Nanopart Res, 14 (2012) 1205.

2. Batryshev D.G., Ramazanov T.S., Dosbolayev M.K. etc., IEEE Transactions on Plasma Science, **44** (5) 2016 P.870.

3. J. Ng, Y. Raitses, Carbon, 77 (2014) P.80-88.

4. Myshkin V.F., Khan V.A., Plekhanov V.G. etc., Russian Physics Journal, **57** (10) 2015 P.1442-1448.

5. Gleizes A., Kafrounif H., Dang Duc H., etc., Phys. D: Appl. Phys., **15** (1982) P.1031-1045.

6. Karpenko E.I., Messerle V.E., Trusov B.G. etc., Goren. i plasmochim., 1 (4) 2003 291-310.

7. Fortov V.E., Chrapak A.G, Yakubov I.T. Fisika neidealnoy plasmy. Uchebn. posobie. - M.: Fismatlit, 2004. - 524 p.

8. Smirnov B.M., UFN, 170 (5) 2000 P.495-534

9. Zeldovich Ya.B., Buchachenko A.L., Frankevich E.L., UFN, 155 (1) 1988 P.3-45

10. http://ej.kubagro.ru/2016/09/pdf/123.pdf

11. Shopin V.M. // Ros.chim.yourn. 60 (4) 2007 P.104-110

12. Pavlov V.A., Skripov V.P., TVT, (8) 1976 P.579-585.

13. Amelin A.G. Teoreticheskie osnovy obrasovaniya tumana pri kondensazii para. – M.: Chimia, 1972. – 304 p.

14. Gorelik A.G., Amitin A.V. Desublim. v chimich. promischl. - M.: Chimiya, 1986. - 272 p.

15. Anisimov M.P., Uspechi chimii, 72 (7) 2003 P.664-705

16. Perekrestov R, Kudrna P, Tichý M. etc., J. Phys. D: Appl. Phys., **49** (2016) 265201 (11pp).

17. Zuchovizkiy D.I., Chrapak A.G., Yakubov I.T. Ionizazionnoe ravnovesie v plasma s kondensirovannoy dispersnoy fasoy. Chimia plasmy / Pod red. B.M. Smirnova. M.: Energoatomizdat, 1984, №11, P.130-170

18. Bulygev E.M., Menschov E.N., Isvestiya Samarskogo NZ RAN, **16** (1) 2014 P.247-254