РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОСТОВСКОЙ ОБЛАСТИ ПО УСЛОВИЯМ ТЕПЛО- И ВЛАГООБЕСПЕЧЕННОСТИ

Новикова И. В. – ассистент

Новочеркасская государственная мелиоративная академия

В статье на основании установленных количественных показателей дефицитов увлажнения и водопотребления картофельного поля выполнено районирование территории Ростовской области. Анализ показателей тепло- и влагообеспеченности и районирование позволили рассчитать осредненные нормы орошения картофеля для характерных по влагообеспеченности лет.

Географическое положение, рельеф, климат, водные ресурсы, почвенный покров Ростовской области создают благоприятные условия для выращивания сельскохозяйственных культур, в том числе и картофеля. Однако низкая природная влагообеспеченность существенно ограничивает производительность сельхозугодий. Повысить эффективность сельскохозяйственного производства можно на основе развития мелиорации, прежде всего, орошения.

Обобщенными характеристиками тепло- и влагообеспеченности являются дефициты увлажнения и водопотребления. Они в комплексе с другими природно-хозяйственными показателями позволяют прогнозировать размеры гидромелиораций.

Недостаточная изученность составляющих уравнений водного и теплового балансов на исследуемой территории диктует необходимость применения расчетных методов. Одним из таких методов является метод гидролого-климатических расчетов, предложенный В. С. Мезенцевым [1; 2].

При определении количественных значений показателей тепло- и влагообеспеченности территории Ростовской области в качестве исходных данных взяты материалы наблюдений метеорологических станций, сравнительно равномерно расположенных на исследуемой территории. В расчетах использованы сведения об осадках, среднемесячной температуре и влажности воздуха за непрерывный ряд лет (1970–1989 гг.) по 31 метеостанции [3].

Расчет дефицитов увлажнения и водопотребления осуществлялся путем сравнения общего увлажнения и суммарного испарения в естественных и оптимальных условиях влагообеспеченности.

За оптимальное водопотребление принят суммарный расход влаги сельскохозяйственным угодьем на транспирацию и испарение с поверхности почвы в условиях, когда влага корнеобитаемого слоя почвы легко доступна растениям. Общая потребность сельскохозяйственных угодий в увлажнении численно приравнена к максимально возможному испарению.

Показатели тепло- и влагообеспеченности характеризуются следующими уравнениями:

$$\Delta X = E_m - (P + W_1 - W_2), \tag{1}$$

$$\Delta E = E_0 - E \,, \tag{2}$$

где ΔX и ΔE — дефициты увлажнения и суммарного испарения, мм;

 E_{m} – максимально возможное испарение, мм;

P – осадки, мм;

 W_1, W_2 — влажность активного слоя почвы в начале и в конце расчетного периода, мм;

 E_0 – суммарное испарение в условиях орошения, мм;

E — суммарное испарение в естественных условиях, мм.

Максимально возможное испарение за месяц (с апреля по октябрь) определяется по формуле:

$$E_{mi} = \frac{A}{d_{z}} \cdot \left(\frac{\sum t_{>10}}{1000} + 2{,}445\right) \cdot d_{i},$$
 (3)

где A — коэффициент, равный для месяца 14,4;

 d_{z} – среднегодовой дефицит влажности воздуха, мб;

 d_i – среднемесячные дефициты влажности воздуха, мб;

 $\sum t_{>10}$ — сумма среднесуточных температур воздуха выше $+10^{\,0}C$.

По формуле (3) определены значения максимально возможного испарения помесячно с апреля по октябрь за каждый год рассматриваемого периода (20 лет). Полученные значения объединены за период май – август по каждому году, так как период вегетации картофеля весенней посадки на территории Ростовской области в среднем длится с мая по август.

В целом за рассмотренный период значения максимально возможного испарения составили: для крайнесухого года — 520—540 мм в северных районах области, 500—540 мм в западных, 600—680 мм в южных и 700—860 мм в восточных районах. В среднесухой год E_m изменяется в пределах 470–530 мм на севере области, 630—640 мм на западе, 600—640 мм на юге и 590—700 мм на востоке области. В средний по обеспеченности осадками год максимально возможное испарение находится в пределах 360—400 мм на севере области, 450 мм на западе и 540—570 мм на юге и востоке. В средневлажный год E_m колеблется от 330—380 мм в северных районах до 430—500 мм в южных и восточных районах области. И, наконец, во влажный год в северной части рассматриваемой территории E_m составляет 300—350 мм, в южной и юго-восточной ее части — 360—420 мм.

При определении максимально возможного испарения в целом за год принята зависимость, предложенная Г. А. Сенчуковым:

$$E_m = 0.0203 \cdot \sum t_{>10} \cdot d_2 + 534. \tag{4}$$

Годовая норма максимально возможного испарения изменяется на территории области от 850 до 1220 мм в крайнесухой год, от 800 до 1000 мм в сухой, от 750 до 950 мм в средний, от 730 до 900 мм в средневлажный и от 700 до 810 мм во влажный год. Меньшие значения максимально возможного испарения отмечены в северных и западных районах, большие его значения в южных и восточных районах.

Максимально возможное испарение является характеристикой теплообеспеченности территории. Для определения характеристик увлажнения необходимо сначала определить потребность растений в воде, суммарное испарение и почвенные влагозапасы.

Экспериментальное определение суммарного испарения с суши весьма затруднительно, поэтому в настоящее время для установления этой характеристики применяются расчетные методы. В. С. Мезенцев [1; 2] рассматривает изменение суммарного испарения при изменении общего увлажнения как единый непрерывный процесс, при котором по мере иссушения почвы уменьшается суммарное испарение, а стадии ее просыхания определяются ходом испарения. В общем виде уравнение связи суммарного испарения и общего увлажнения представлено следующим образом:

$$E = E_m \cdot \left[1 + \left(\left(P + W_1 - W_2 \right) / E_m \right)^{-n} \right]^{-1/n}, \tag{5}$$

где n — параметр, определяемый отношением фактического испарения в условиях оптимальной влагообеспеченности и максимально возможного испарения [4].

Связь суммарного испарения с общими влагозапасами может быть представлена уравнением:

$$E = E_m \cdot \left(1 + V_{cp}^{-rn}\right)^{-1/n},\tag{6}$$

где V_{cp} — средняя за расчетный период влажность деятельного слоя почвы в долях от наименьшей влагоемкости;

r – параметр, определяемый водно-физическими свойствами почв [4].

Поскольку в уравнениях (1), (5) и (6) фигурируют величины влажности почвы W_1, W_2 и ее среднее значение за расчетный промежуток времени V_{cp} , постольку последнее необходимо выразить через начальное и конечное значение. Наиболее простым выражением является среднее арифметическое:

$$V_{cp} = \frac{W_{cp}}{W_{HB}} = \frac{W_1 + W_2}{2 \cdot W_{HB}} = \frac{V_1 + V_2}{2} \,. \tag{7}$$

Однако влагосодержание почвы далеко не всегда изменяется равномерно. Обычно в начале расчетного промежутка времени почва после увлажнения просыхает быстрее, а затем интенсивность уменьшения влагосодержания затухает.

Средняя за расчетный промежуток времени влажность почвы будет равна

$$W_{cp} = (W_1 + r \cdot W_2) \cdot (r+1)^{-1}.$$
 (8)

Величина W_{cp} в интервале от 0,4 до 1,2 W_{HB} с достаточной точностью может быть также определена по соотношению:

$$W_{cp} = W_1 \left(\frac{W_2}{W_1}\right)^{1/r}$$
, или $V_{cp} = V_1 \left(\frac{V_2}{V_1}\right)^{1/r}$. (9)

С учетом выражения $V = \frac{W}{W_{HB}}$ и выражений (7), (8) и (9), а также зависимостей (5) и (6) путем исключения величины W_2 получается зависимость:

$$V_{cp}^{r} = \left(P \cdot W_{HB}^{-1} + V_{1}\right) \cdot \left(E_{m} \cdot W_{HB}^{-1} + V_{1}^{1-r}\right)^{-1}.$$
 (10)

Формула (10) выражает искомую среднюю влажность почвы V_{cp} в явном виде. Она без дополнительных преобразований может быть использована в расчетах балансовых уравнений.

Влажность на конец расчетного промежутка времени V_2 определяется по формуле:

$$V_2 = V_1 \left(\frac{V_{cp}}{V_1}\right)^r. \tag{11}$$

В расчетах на 1 апреля 1970 года влажность почвы в долях от НВ была принята равной 1, то есть V_1 =1. Далее при использовании зависимости (11) определена влажность почвы на конец расчетного периода (месяца), то есть на 30 апреля — V_2 . Влажность почвы на начало следующего расчетного периода (1 мая) принималась равной влажности почвы в конце предыдущего периода, то есть $V_1 = V_2$, и так далее. Влажность почвы на 1 апреля 1971 года принималась равной влажности почвы на конец расчетного периода (ноябрь — март) 1970—1971 гг. (V_2), и далее влажность почвы определялась по месяцам за непрерывный ряд лет для 31 метеостанции на территории Ростовской области.

Зная влажность почвы, можно определить суммарное испарение в естественных условиях за каждый месяц рассматриваемого периода.

Суммарное испарение за период май — август в естественных условиях увлажнения изменялось следующим образом. В крайнесухой год E на севере области составило 100–140 мм, 170–180 мм — в южных ее районах и 200–230 мм — в восточных. В среднесухой год суммарное испарение колеблется в пределах 150–200 мм на севере и 200–240 мм на юге и юговостоке области. В средний по обеспеченности осадками год в северных районах области величина E изменяется от 160 до 200 мм, в южных и восточных — 150–250 мм. Интервал изменений E в средневлажный год соста-

вил 200–250 мм на севере области и 170–260 мм на юге и востоке. Во влажный год величина E была равна 220–300 мм.

Описанное изменение суммарного испарения во времени и по территории характерно для условий естественного увлажнения, при котором исследуемая величина ограничена ресурсами влаги. С переходом от естественных условий влагообеспеченности к оптимальным (последние на исследуемой территории возможны при орошении) суммарное испарение значительно возрастает и будет определяться в основном теплоэнергетическими ресурсами климата.

В условиях оросительных мелиораций суммарное испарение определяется по уравнению связи:

$$E_0 = E_m \cdot \left(1 + V_0^{-rn}\right)^{-1/n},\tag{12}$$

где V_0 — заданный средний за межполивной период уровень оптимального увлажнения расчетного слоя почвы.

В случае, когда увлажнение расчетного слоя почвы в среднем за межполивной период создается равным наименьшей влагоемкости W_{HB} , уровень оптимальности равен 1 (V_0 =1). При поддержании влажности почвы в течение всего периода вегетации в пределах 100–80 % НВ уровень увлажнения равен 0,9, то есть V_0 = 0,9 (высокая влагообеспеченность). При снижении уровня влагообеспеченности, когда влажность почвы в течение вегетационного периода находится в пределах 90–70 % НВ, V_0 = 0,8.

Исходя из вышесказанного, дефициты увлажнения определяются по формулам для условий:

$$V_0 = 1$$
 $\Delta X = E_m - (P + W_1 - W_2),$ (13)

$$V_0 = 0.9 \qquad \Delta X = 0.9^r \cdot E_m - (P + W_1 - W_2), \qquad (14)$$

$$V_0 = 0.8 \qquad \Delta X = 0.8^r \cdot E_m - (P + W_1 - W_2). \tag{15}$$

Дефициты водопотребления определяются по зависимостям:

$$V_0 = 1$$
 $\Delta E = E_m \cdot 2^{-1/n},$ (16)

$$V_0 = 0.9$$
 $\Delta E = E_m \cdot \left(1 + 0.9^{-rn}\right)^{1/n},$ (17)

$$V_0 = 0.8 \qquad \Delta E = E_m \cdot \left(1 + 0.8^{-rn}\right)^{1/n}. \tag{18}$$

По формулам (14), (15), (17) и (18) определены дефициты увлажнения помесячно за каждый год рассматриваемого периода. Расчет произведен для 31 метеостанции на территории Ростовской области. Полученные значения ранжированы в убывающем порядке, что дало возможность выделить реальные годы на заданные проценты обеспеченности по ΔX , ΔE : 5 % — крайнесухой год; 25 % — среднесухой год; 50 % — средний год; 75 % — средневлажный год и 95 % — влажный год.

На основании установленных количественных показателей дефицитов увлажнения и водопотребления картофельного поля построены карты изолиний отмеченных дефицитов на территории Ростовской области для характерных по влагообеспеченности лет и выполнено районирование исследуемой территории.

При районировании выделены районы и подрайоны. Границы районов определены на основе анализа потребности картофельных угодий в дополнительном увлажнении. Они нанесены на основе совмещения карт изолиний различных показателей увлажнения в характерные по влагообеспеченности годы. Подрайоны в границах мелиоративных районов определены с учетом изменения оросительных норм.

Мелиоративный район 1 охватывает восточную и юго-восточную части области и включает в себя Заветнинский район (подрайон 1A), Дубовский, Зимовниковский, Орловский, Ремонтненский районы и южную

часть Пролетарского района (подрайон 1Б). Сумма среднесуточных температур воздуха выше 10^{0} C составляет $3200-3400^{0}$ C и более. Максимально возможное испарение за период май – август для условий крайнесухого года составляет 700-860 мм, для условий среднесухого года – 610-720 мм, для условий среднего года – 550–570 мм, для условий средневлажного года - 370-500 мм и для условий влажного года - 340-420 мм. Дефициты увлажнения при высокой влагообеспеченности изменяются следующим образом: в крайнесухой год от 420-580 мм, в среднесухой год от 360 до 450 мм, в средний год – 220–300 мм, в средневлажный год – 180–250 мм и от 80 до 130 мм во влажный год. При снижении влагообеспеченности и поддержании влажности почвы в пределах 90-70 % НВ дефициты увлажнения несколько ниже и составляют для условий крайнесухого года 300 – 430 мм, для условий среднесухого года 240-320 мм, для условий среднего года 140-190 мм, для условий средневлажного года 110-160 мм, для условий влажного года 20-60 мм. Дефициты водопотребления при высокой влагообеспеченности изменяются в пределах: 350-500 мм в крайнесухой год, 250-350 мм в среднесухой год, 200-220 мм в средний год, 100-160 мм в средневлажный год и 10-100 мм во влажный год. При снижении влагообеспеченности дефициты водопотребления варьируют от 260 до 400 мм в крайнесухой год; 170-270 мм в среднесухой год; 140-170 мм в средний год; 50–100 мм в средневлажный год; 0–50 мм во влажный год.

Мелиоративный район 2 охватывает южную, центральную и центрально-восточную части Ростовской области и включает в себя Волгодонской, Мартыновский районы и северную часть Пролетарского района (подрайон 2A), Зерноградский, Целинский, Сальский, Песчанокопский, Егорлыкский, Кагальницкий, Константиновский, Усть-Донецкий, Октябрьский, Аксайский, Багаевский, Семикаракорский, Веселовский, Морозовский, Цимлянский районы (подрайон 2Б). Сумма активных температур воздуха равна 3100–3200 °С. Максимально возможное испарение за период

май – август изменяется от 550-670 мм в крайнесухой год до 340-400 мм во влажный год. Дефициты увлажнения при высокой влагообеспеченности для условий крайнесухого года составляют 300-370 мм, среднесухого -220-320 мм, среднего – 170-250 мм, средневлажного – 90-180 мм, влажного – 10–50 мм. При необходимости создания пониженной влагообеспеченности дефициты увлажнения составляют: 200–270 мм в крайнесухой год; 130-230 мм в среднесухой год; 70-170 мм в средний год; 20-110 мм в средневлажный год. Во влажный год при $V_0 = 0.8$ дополнительное увлажнение не требуется. Дефициты водопотребления при поддержании влажности почвы в пределах 100–80 % НВ (V_0 = 0,9) составляют: 250–300 мм в крайнесухой год, 180-230 мм в среднесухой, 130-190 мм в средний год, 50-120 мм в средневлажный год. При снижении влагообеспеченности дефициты водопотребления в условиях крайнесухого года составляют 170-230 мм, в условиях среднесухого года 100–170 мм, в условиях среднего года 70–140 мм, средневлажного – 20–100 мм. В рассматриваемом районе во влажный год орошение требуется только при необходимости поддержания высокого уровня влагообеспеченности, при пониженном уровне влагообеспеченности картофель можно возделывать без орошения.

Мелиоративный район 3 охватывает западную и северную части области. В него входят Неклиновский, Матвеево-Курганский, Куйбышевский, Родионо-Несветайский, Мясниковский, Азовский, Красносулинский, Каменский, Милютинский, Тарасовский, Кашарский, Белокалитвенский, Миллеровский, Советский, Обливский, Тацинский, Верхнедонской, Шолоховский, Чертковский и Боковский районы. Сумма активных температур воздуха равна $2800-3100\,^{0}C$. В крайнесухой год дефициты увлажнения при высокой влагообеспеченности составляют здесь $250-320\,$ мм, дефициты водопотребления — $200-240\,$ мм, максимально возможное испарение равно $480-600\,$ мм. В среднесухой год дефициты увлажнения составляют $150-250\,$

мм, дефициты водопотребления — 100—190 мм. В средний год дефициты увлажнения находятся в пределах 80—170 мм, дефициты водопотребления 50—100 мм. В средневлажный год дефициты увлажнения изменяются от 20 до 70 мм, дефициты водопотребления находятся в пределах 10—50 мм. При поддержании пониженной влагообеспеченности дефициты увлажнения составляют 150—210 мм в крайнесухой год, 50—150 мм в среднесухой год, 10—80 мм в средний год. Дефициты водопотребления изменяются в пределах 100—180 мм в крайнесухой год, 50—130 мм в средний год, 0—80 в средний год. На рассматриваемой территории во влажный год орошение не требуется, в средневлажный год орошение картофеля необходимо только при поддержании высокого уровня влагообеспеченности. При снижении влагообеспеченности картофель в условиях средневлажного года можно возделывать без орошения.

Районирование и анализ показателей тепло- и влагообеспеченности выделенных районов с учетом результатов многолетних наблюдений по режимам орошения картофеля позволили рассчитать осредненные нормы орошения для характерных по влагообеспеченности лет (табл.).

Таблица – Основные показатели увлажнения мелиоративных районов Ростовской области

	Количественные значения показателей по мелиоративным						
Наименование показателей	районам и подрайонам						
	1		2		3		
	A	Б	A	Б			
1	2	3	4	5	6		
Дефициты увлажнения за май – август, мм,							
при ($V_0 = 0.9$):							
крайнесухой год	570-580	420–460	330–370	300–360	250–320		
среднесухой год	440–450	360–380	280–320	220–280	150–250		
средний год	290-300	220–290	200–250	170–200	80–170		
средневлажный год	240-250	180–210	170–180	90–150	0–70		
влажный год	120-130	80–130	30–50	10–50	<0		
Дефициты увлажнения за май – август, мм,							
при $(V_0 = 0.8)$:							
крайнесухой год	420–430	290–330	230–270	200–250	150–210		
среднесухой год	310–320	240–280	190–230	130–180	50–150		
средний год	180–190	140–190	120–170	70–120	10–80		
средневлажный год	150–160	110–130	90–110	20–100	<0		
влажный год	50-60	20–50	<0	<0	<0		
Дефициты водопотребления за май – август, мм,							
при $(V_0 = 0.9)$:	490-500	350–380	270-300	250-300	200–240		
крайнесухой год	340-350	250-300	200-230	180-230	100–190		
среднесухой год	200–220	200–220	150–190	130–180	50–100		
средний год	150-160	100–150	90–120	50–120	0–50		
средневлажный год	90–100	10–50	<0	<0	<0		

влажный год					
1	2	3	4	5	6
Дефициты водопотребления за май – август, мм,					
при $(V_0 = 0.8)$:					
крайнесухой год	380–400	260–280	200–230	170–230	100–180
среднесухой год	260–270	170–220	160–170	100–150	50–130
средний год	160–170	140–160	100–140	70–120	0–80
средневлажный год	90–100	50–100	40–90	20–100	<0
влажный год	40–50	<0	<0	<0	<0
Осредненные нормы орошения картофеля, $M^3 / \epsilon a$,					
при высокой влагообеспеченности:					
крайнесухой год	5700–5800	4200–4600	3300–3700	3000–3600	2500–3200
среднесухой год	4400–4500	3600–3800	2800–3200	2200–2800	1500–2500
средний год	2900–3000	2200–2900	2000–2500	1700–2000	800–1700
средневлажный год	2400–2500	1800–2100	1700–1800	900–1500	0–700
влажный год	1200–1300	800–1300	300–500	100–500	<0
Осредненные нормы орошения картофеля, $m^3 / \epsilon a$,					
при пониженной влагообеспеченности:					
крайнесухой год	4200–4300	2900–3300	2300–2700	2000–2500	1500–2100
среднесухой год	3100–3200	2400–2800	1900–2300	1300–1800	500–1500
средний год	1800–1900	1400–1900	1200–1700	700–1200	100-800
средневлажный год	1500–1600	1100–1300	900–1100	200–1000	<0
влажный год	500–600	200–500	<0	<0	<0

Анализ дефицитов увлажнения и водопотребления показывает, что на всей территории Ростовской области при возделывании картофеля в крайнесухие, среднесухие и средние по обеспеченности годы необходимо дополнительное увлажнение. Возделывание картофеля без орошения возможно во влажные годы в северных, западных, северо-западных районах области. В центральных, центрально-восточных и южных районах области во влажные годы требуется небольшое доувлажнение только при необходимости создания высокой влагообеспеченности. В средневлажный год в северных, западных и северо-западных районах области возделывание картофеля без орошения возможно при поддержании влажности почвы в пределах 90–70 % НВ.

Список литературы

- 1. Мезенцев, В. С. Гидрологические расчеты в мелиоративных целях / В. С. Мезенцев: учеб. пособие. Омск: Изд-во Омского СХИ, 1982.
- 2. Мезенцев, В. С. Гидролого-климатические основы проектирования гидромелиораций / В. С. Мезенцев : учеб. пособие. Омск : Изд-во Омского СХИ, 1993.
- 3. Метеорологический ежемесячник. Вып. 13. Ч. 2. Гос. ком. СССР по гидрометеорологии и контролю природной среды Сев.-Кавк. тер. упр. по гидрометеорологии и контролю природ. среды. Обнинск : ВНИИГМИ-МЦД, 1970–1989.
- 4. Сенчуков, Г. А. Ландшафтно-экологические и организационно-хозяйственные аспекты обоснования водных мелиораций земель. Приложение 3 / Г. А. Сенчуков. Ростов-н/Д: Изд-во СКНЦ ВШ, 2001.