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I ntroduction

Silicon sdlf-interstitials play an important role in the growth of stacking
faults and contribute to dislocation nucleation. The effects of stress on dopant
diffusion in silicon are also attributed to the behavior of intrinsic point defects
in stressfields [1-5].

Equilibrium concentrations of silicon self-interstitials and vacancies are

known to depend on stress as follows [6,7]:

. . PDV.

C =C, exp(- ?I), (1)
. . PDV.

C, =C Y 2
v v0 eXp( kT )’ ( )

where C° and C, are the equilibrium concentrations of interstitials and
vacancies, respectively, in the presence of the stress field, C;, and C, are the
stress-free equilibrium concentrations, Pis pressure, DV. and DV, are the

activation volumes, k is Boltzmann's constant, T is absolute temperature. The

terms PDV, and PDV, describe a reversible work process of the point defect

formation under stress. They show a change in the Gibbs free energy of the
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formation of an interstitial or vacancy due the presence of the stress field [7].
Therefore, the activation volumes in Equations 1 and 2, being the coefficients of
pressure in the reversible work process, are indeed thermodynamic formation
volumes. These activation volumes have been calculated based on the
assumption of sphericity of the interstitial and vacancy with radii of 1.11 A and
2.47 A, respectively [1-3], or using ab initio calculations [4,5,8]. Nevertheless,
there is no agreement in literature on the values for these parameters.

From Equations 1 and 2, the equilibrium concentration of self-interstitials
decreases and the equilibrium concentration of vacancies increases under
compressive stress. Tensile stress has an opposite effect on the equilibrium
point defect concentrations. Since boron and phosphorus are known to diffuse
mainly in pairs with interstitials [9], retardation of the diffusion of these dopants
IS expected under compressive stress. There is some experimental evidence of
such retarded diffusion [3,10]. At the same time, boron diffusion enhancement
under compressive stress has been reported as well [11,12]. This discrepancy
could possibly be explained by differences in point defect interaction with the
free surface [4]. Most models of stress-dependent point defect and dopant
diffusion consider only bulk interactions. However, stress-dependent surface
generation and recombination of point defects may cause significant changesin
their distributions. These processes are not well understood due to a lack of
experimental results.

In this paper, amodel is developed for the stress-induced redistribution of
intrinsic point defects in silicon. It incorporates equilibrium conditions different
for defects at the surface and in the bulk of silicon, taking into account stress-
dependent surface generation and recombination of point defects. Using the
model, such phenomena as stacking fault growth and stress-mediated dopant

diffusion are simulated.
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Calculation of Activation Volumesfor Interstitials and Vacancies

In the derivation of the activation volumes for intrinsic point defects,
silicon is considered as an elastic continuum. A Si-interstitial is modeled as a
non-compressible ball. The radius of the ball equals to the radius of a silicon
atom, R, = 1.32 A [13]. The ball is inserted into a spherical hole having the
radius R, of an interstitial site. The radius of an interstitial site is the maximum
radius of a ball that can be inserted into the interstitial site without deforming it.
Two interstitial sites in silicon are considered. First, the octahedral site, such as
the one which center has coordinates /s, °/s, °/s in a unit cell of the silicon
lattice. The coordinates of the six nearest lattice sitesare 2, ', 1; Y%, 1, ¥; 1,
Vo, Yoy Ya, 3, 3la; 3la, Ya, 3la; 3la, 3la, Ya The distance between the center of the
octahedral site and these lattice sites is V11 a/8. Therefore, R =+11ay/8 - Ry =
0.93 A, where ay = 5.4307 A is the silicon lattice constant. The second
interstitial site is the tetrahedral one, for example the site with coordinates
Y5, Y5, Yo The four nearest lattice sites are  Ya, Ya, Ya, Ya, 3la, 3la; 3Ma, Ya, 34
314, 3la, Ya. Therefore, R =v/3a0/4 - Ry = 1.03 A. The preferential interstitial site
(the bigger one) has R = 1.03 A. The difference of volumes of the Si atom and
interstitial site AV = 4/3n(R.2 - R®) = 5 A% might be regarded as the activation
volume of self-interstitials. However, this approach does not take into account
such factors as "compressibility" of the silicon atom, chemical-valency effects,

and local relaxations [7]. Thus, the derived value is overestimated. A more

reasonable activation volume of Si-interstitials seems to be AV, = %DV ~ 25

A3

A vacancy is considered to be formed by removing a spherical ball from
the elastic continuum of silicon resulting in the formation of a hole. The radius
of the ball is R.. The size of the hole becomes smaller than the size of the ball

because of surface tension. The activation volume of a vacancy is the difference
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in volumes of the ball V, and the hole Vi. The surface energy of the hole before
contraction Ep = 4nRs?%y, where y = 1.5 JJm? is the silicon surface energy [13].
After the contraction by AR, the energy of the hole E = 4n(R. - AR)?%y. Thus, the
total force of surface tenson F =~ (Eo — E)/AR = 8rR.y. This gives the
contracting pressure P = F/(4nR.?) = 2y/R.. This pressure causes the reduction
in the radius of the hole by u = 0.5PR,(1+n)/Y, where n ~ 0.28 is Poisson’s
ratio and Y = 170 GPais Young's modulus of silicon [14]. Then, u=y(1+n)/Y =
0.113 A. Finally, the activation volume of avacancy isfound as AV, = 4/3rn{R,>
—(Rr-U)®} =23A3

The obtained values for the activation volumes of point defects are close

to those suggested in some reports [2,3,8].

Diffusion Equationsfor Point Defects

The following diffusion equations are considered for interstitials and

vacancies in the bulk of silicon:

=N R, 3)
oS
J=-DCR( ), (4)
Rb = Kb(Cin - Ci*C;)s (5)

where C, C', D, and Jare the concentration, equilibrium concentration,

diffusivity, and flux of interstitials or vacancies, R, and K, are the bulk

recombination rate and its rate factor, i and v denote parameters for interstitials
and vacancies, respectively.

Equation 4 is different from the standard expression for the diffusion flux
J=-DNC [15] and accounts for non-uniformity in the equilibrium
concentrations of point defects due to their interaction with external fields.
Substituting Equations 1 and 2, which describe the exponential dependency of

the equilibrium point defect concentrations on pressure, into Equation 4, and
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ignoring the drift of charged point defects in the electric field, it is possible to
express the total point defect flux as a sum of the diffusion flux and the drift
flux in the pressure field:

<~ DCDV, ¢

J, =-D,NC, NP, (6)
KT
J, =-DNC, +%NP. (7)

Sur face Gener ation and Recombination of Point Defects

At a stress-free surface, self-interstitial and vacancy fluxes due to surface
generation and recombination are given by [15]

Ji. =-K(C - C) +G,, (8)

Jis == K (C, - Cpo), (9)

where C;, and C,, are the stress-free equilibrium concentrations of interstitials

and vacancies, K, and K, are their surface generation-recombination rate

factors, and G_ isthe interstitial injection rate due to oxidation. Terms K, .C, and

K,.C, describe surface recombination, while K. C,, and K C., describe surface

vs ~v0

generation of point defects.
In the presence of the stress field, these equations have to be modified to

account for the free energy change associated with the surface generation-

recombination process:

P(DV, - DV,)

3. =- Kl exp- D2y e P e, (10)
3= KlC, exp(C ) - ¢ ep(- SV 2y, (11)

where DV, is the silicon volume change occurring when a silicon atom is added
to or removed from the silicon surface. Dv, = 20 A3, which is the volume of

silicon per atom.
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The process of surface generation-recombination of point defects is
illustrated in Figure 1 showing the generation of a Si-interstitial. When an
interstitial is formed by removing an atom from the silicon surface and inserting

it into the crystal, there is a thermodynamic volume expansion DV, , associated

with the fact that the size of the Si atom is larger than the size of the interstitial
site. On the other hand, there is a decrease in the volume of the whole Si crystal
because one atom has left its surface. This volume change is equal to the

volume of silicon per atom Dv, = 20 A® > Dv,. The difference of these two
volumes (DV, - DV,) isfound in the exponents in Equation 10, which shows how

interstitial surface generation and recombination change under pressure.

As follows from Equations 10 and 11, the surface generation of
interstitials, leading to the thermodynamic volume decrease, increases with
pressure while their recombination decreases. The effect of pressure on

vacancies is opposite. Since (DV, - DV) is positive for both interstitials and

vacancies, interstitial generation increases under compression and vacancy
generation increases under tension.

Under the equilibrium conditions, the surface flux of point defects is
zero. Therefore, Equations 10 and 11 effectively describe the deviation of

equilibrium defect concentrations at the surface from their values in the bulk.

DV,

S

Si atom —7 l

o/

DV

Si interstitial

S

Figure 1. Sdlf-interstitial formation in silicon by surface generation. AVs > AV,.
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Simulation of Sacking Fault Growth

Stacking faults in silicon are oxidation-induced defects. Therefore, their
preferential growth in the field areas, where interstitial injection due to
oxidation has the highest rate, seems logical and is supported by experimental
results. At the same time, the appearance of stacking faults at the edges of active
areas has been reported by Jarreau [16]. An enhancement in stacking fault
growth at active edges can be explained by either an increased density/size of
their nucleation centers due to some damage (for example, plasma-induced
damage) or by enhanced interstitial generation in this area. The later is
consistent with the proposed model for stress-dependent surface generation and
recombination of point defects.

Figure 2 shows simulated pressure, equilibrium concentration and
concentration of interstitials, as well as stacking fault radius after steam field
oxidation performed at 1100 °C. The results were obtained using a 2D process
simulator TSUPREM-4 [17]. Stress-dependent surface generation and
recombination of point defects was taken into account. As can be seen, pressure
is at maximum under the nitride edge (Figure 2a). This decreases equilibrium
concentration of interstitials in this area (Figure 2b), but increases their
concentration due to enhanced surface generation (Figure 2c). Consequently,
stacking fault size is also increased under the nitride edge (Figure 2d). The
stacking fault radius at the position of the pressure peak is about the same as
that under the field oxide. A uniform density of stacking fault nucleation centers
and their constant size was used in this simulation. To obtain even larger
stacking faults at the active edge, higher density or larger size of their

nucleation centers should be assumed.
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Figure 2: Contour plots of simulated (a) pressure (Pa), (b) equilibrium concentration and
(c) concentration of interstitials (cm™), (d) stacking fault radius (A) after steam field
oxidation performed at 1100 °C. Stress-dependent surface generation and recombination
of point defects was taken into account.

Simulation of Stress-M ediated Dopant Diffusion

The effect of stress on dopant diffusion in silicon is usually attributed to
the behavior of intrinsic point defects and dopant-defect pairsin stressfields [1-
5]. Since boron and phosphorus are known to diffuse mainly in pairs with
interstitials [9], retardation of the diffusion of these dopants is expected under
compressive stress reducing the equilibrium concentration of interstitials.
However, the existing models for stresssmediated dopant diffusion fail to
explain conflicting experimental results. Both retardation [10] and enhancement

of boron diffusion under compressive stress have been reported [11,12].
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This discrepancy could possibly be explained by considering point defect
interaction with the silicon surface. In different experiments, surface generation
and recombination of point defects could play more or less pronounced role in
the defect and therefore dopant distribution depending upon the proximity of
the surface to the studied region.

Using the developed model for the stress-induced point defect
redistribution and their surface generation and recombination, the impact of
stress on boron diffusion was simulated. In TSUPREM-4, the five-stream
diffusion model was used for boron [18]. This model assumes that dopant
diffusion occurs through the formation of dopant/defect pairs that diffuse as a
unit. The concentration of such pairs depends upon dopant concentration and
point defect supersaturation. Therefore, a change in point defect concentrations
due to their redistribution in the stress fields is expected to directly affect boron
diffusion.

In the simulation, an experimental setup used by Osada et al. [10] was
replicated. Boron with adose of 7.5 ° 10 cmr® was implanted at 70 keV into a
p-type (100) S substrate through a 50 nm thick screen oxide. After 30 min
annealing at 900 °C in N, and removing SiO,, a 500 nm thick SizN4 film was
deposited and patterned. Then an anneal in N, at 1014 °C for 120 min was
performed.

Simulation results on the pressure distribution and equilibrium
concentration of self-interstitials, as well as concentrations of interstitials,
boron-interstitial pairs, and boron are shown in Figures 3 - 6. Two groups of the
results are presented. In one simulation, stress-dependent surface generation and
recombination of point defects was taken into account. In the other simulation,

it was neglected.
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Figure 3: Simulated (a) pressure (Pa) and (b) equilibrium concentration of interstitials
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Figure 4: Simulated interstitial concentration (cm3) after 1014 °C anneal in N2 for 120
min (&) with and (b) without taking into account stress-dependent surface generation and
recombination of point defects.

As can be seen in Figure 3, the equilibrium concentration of self-
interstitials decreases under the nitride, in the region of compression. It
increases at the nitride edge under tensile stress. The concentration of
interstitials increases under the nitride in Figure 4a due to their enhanced
surface generation. In Figure 4b, the interstitial concentration almost exactly
follows the contours of the equilibrium concentration.

In Figure 5a, the concentration of boron-interstitial pairs decreases under

the nitride edge due to a lower interstitial supersaturation and slightly increases

http://ej.kubagro.ru/2013/06/pdf/51.pdf



http://ej.kubagro.ru/2013/06/pdf/51.pdf

Hayunsriit sxxypran Kyol'AY, Ne90(06), 2013 roga 11

_07s L L 1 L L L I _07

, s , , s ,
Mb b Mb

(a) 21156414 ( ) 18096414

s ... o .

1269e+14 1086e+14

8465e+13 7 243e+13

. 4237413 : 3626e+13
S|3N4 54980410 S|3N4 8.513e+10

Distance (tm)
Distance (um)

4] 025 03 075 1 ‘ 15 175 2 0 025 0.5 075 1 125 15 175 2
Distance (um) Distance (pm)

Figure 5: Simulated concentration of boron-interstitial pairs (cm) after 1014 °C anneal
in N2 for 120 min (a) with and (b) without accounting for stress-dependent surface
generation and recombination of point defects.
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Figure 6: Contour plots of simulated boron concentration (cm®) after 1014 °C annedl in
N2 for 120 min (&) with and (b) without accounting for stress-dependent surface
generation and recombination of point defects.

under the nitride. On the contrary, in Figure 5b the concentration of boron-
interstitial pairsis almost independent of alateral position. Same relative lateral
uniformity of the boron concentration can be seen in Figure 6b.

Figure 6a shows that taking into account the stress-dependent surface
generation and recombination of point defects results in an increase in boron
concentration under the nitride edge at the peak of tensile stress. At the same
time, the boron concentration is decreased in the bulk. This is opposite to what

can be seen under the nitride, where stress is compressive. Near the surface, the
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boron concentration is lower than that in the open area, and the contours lie
closer to the interface, which might be interpreted as a slower diffusion.
However, deeper in the substrate, the boron concentration under the nitride is
glightly higher than that in the open region. This shows an increase in boron
diffusion and agrees with the results of Zhao at al. [11,12], whose
measurements suggest enhanced boron diffusivity under compressive stress.
Therefore, our results demonstrate the importance of surface proximity in
analyzing the effect of stress on dopant diffusion.

It is necessary to point out that the stress-dependencies of dopant-defect
pairing coefficients and equilibrium pair concentrations were not taken into
account in this simulation. Since these effects may play a more or less
significant role in stress-mediated dopant diffusion, a detailed study of them is
required in the future.

Conclusions

In this paper, the model was developed for the stress-induced
redistribution of point defects in silicon device structures. It incorporates
equilibrium conditions different for defects at the surface and in the bulk of
silicon and takes into account stress-dependent surface generation and
recombination of point defects. In the model, equilibrium concentrations of
intrinsic point defects depend exponentially on hydrostatic pressure in silicon.
For bulk interactions, the calculations yielded the activation volumes of about
2.5 A% and 2.3 A® for interstitials and vacancies, respectively. The activation
volumes for surface generation and recombination of point defects close to 18
A3 were used.

Computer simulations showed that the enhancement in surface generation
of interstitials under compressive stress may explain the growth of larger

stacking faults at the edges of active areas.
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The importance of taking into account the proximity of the silicon surface
in analyzing the effect of stress on dopant diffusion was demonstrated using
simulations. It is shown that surface generation and recombination of point
defects play a pronounced role in the point defect and therefore dopant
distribution.
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