УДК630*114.11:582.475.4

ВЛИЯНИЕ ПОЧВЕННО-ЭКОЛОГИЧЕСКИХ УСЛОВИЙ НА РОСТ СЕЯНЦЕВ СОСНЫ ОБЫКНОВЕННОЙ 1

Митякова Ирина Ивановна к.б.н., доцент Поволжский государственный технологический университет, Йошкар-Ола, Россия

Изучено влияние агрохимических и физических свойств почвы на рост сеянцев сосны обыкновенной в лесных питомниках Чувашской Республики. Разработаны математические модели зависимости роста сеянцев от агрохимических и физических свойств почвы

Ключевые слова: СОСНА ОБЫКНОВЕННАЯ, ПОЧВА, СЕЯНЦЫ, ПЛОТНОСТЬ СЛОЖЕНИЯ, РОСТ, ГУМУС, КИСЛОТНОСТЬ

UDC 630*114.11:582.475.4

EFFECT OF SOIL AND ECOLOGICAL CONDITIONS ON THE GROWTH OF SEEDLINGS OF PINUS SYLVESTRIS

Mityakova Irina Ivanovna Cand.Biol.Sci., associate professor Volga State University of Technology, Yoshkar-Ola, Russia

The influence of agrochemical and physical properties of a soil on the growth of the seedlings of *Pinus sylvestris* in the forest nurseries in Chuvash Republic is studied. The correlations of the growth of the seedlings and agrochemical and physical properties of the soil are simulated

Keywords: *PINUS SYLVESTRIS*, SOIL, SEEDLINGS, DENSITY OF COMPOSITION, GROWTH, HUMUS, ACIDITY

Введение. Почва и произрастающие лесонасаждения на ней являются одними из важнейших компонентов биосферы, находящиеся в настоящее время под воздействием различных антропогенных факторов: рубки, техногенные выбросы в атмосферу, загрязнение почв и др. В результате таких воздействий наблюдается деградация лесных экосистем. Для поддержания нормального и устойчивого функционирования лесов и установления равновесия в ландшафтах в системе «растение - почва - растение» необходимо проводить масштабные работы по лесовосстановлению и лесоразведению. Известно, что неотъемлемой и важнейшей частью таких работ является выращивание качественного посадочного материала - сеянцев и саженцев древесных пород, устойчивых к современной экологической ситуации [1].

Успешность выращивания посадочного материала в первую очередь зависит от действия экологических факторов влияющих на рост и развитие сеянцев и саженцев, усвоение растениями питательных элементов. Многочисленными исследованиями установлено, что все необходимые элементы

http://ej.kubagro.ru/2012/07/pdf/34.pdf

-

¹ Работа выполнена в рамках реализации ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы» (государственный контракт № 16.552.11.7050 от 29 июля 2011 г.) с использованием оборудования ЦКП «ЭБЭЭ» ФГБОУ ВПО «МарГТУ».

минерального питания растения берут из почвы, поэтому их рост зависит от плодородия почвы. Кроме того, благоприятное развитие высших растений, микроорганизмов, а также интенсивность протекания биохимических и физико-химических процессов, скорость химических реакций в большой степени зависит также от водно-физических свойств почвы.

Цель исследования заключалась в изучение влияния агрохимических и физических свойств почвы на рост двулетних сеянцев сосны обыкновенной и разработке моделей зависимости роста сеянцев от содержания гумуса, обменного калия, кислотности и плотности сложения почвы.

Объект исследований. Постоянный лесной питомник ГУ «Ибресинское лесничество» Управления лесного хозяйства Министерства природных ресурсов и экологии Чувашской Республики, организованный в 1969 году на площади 11,8 га. Почвы на территории питомника дерновосреднеподзолистые супесчаные почвы на древнеаллювиальных слоистых песках подстилаемые суглинками.

Методика исследований. Полевые исследования почвы проводили согласно ОСТ 56-81-84 [2]. Физико-химические свойства почв определяли: гумус — по И.В. Тюрину, рН_{сол} вытяжки — потенциометрически, подвижный фосфор и обменный калий — по А.Т. Кирсанову, щелочногидролизуемый азот — по методу ЦИНАО, плотность сложения ненарушенного образца.

Для изучения влияния почвенно-экологических условий на рост сеянцев сосны обыкновенной нами была использована методика Н.А. Смирнова [3]. В посевном отделении питомника были подобраны 30 учетных площадок с различными размерами двулетних сеянцев сосны обыкновенной. При подборе учетных площадок придерживались следующих условий: количество сеянцев на 1 п.м. посевной строчки составляло 60-70 шт., участки не различались по рельефу, в пределах одного участка сеянцы практически не различались по высоте. Сеянцы для анализа выкапывали в

середине каждого участка в количестве 40-50 шт. с подрезкой корней на глубине 25 см. В местах выкопки сеянцев отбирали почвенные образцы, в которых определяли агрохимические показатели, на той же глубине, послойно, определяли плотность сложения почвы с глубины 0-10 см, 10-20 см, 20-30 см.

Результаты исследований.

Согласно методике проведения работ, на подобранных участках были взяты образцы почв с последующим определением в них основных агрохимических показателей, средние показатели представлены в табл. 1.

Н.А. Смирновым [3], Н.Д. Васильевым [4], Е.М. Романовым [5] и др. установлено, что повышение содержания в почвах гумуса способствует лучшему росту сеянцев древесных растений.

Таблица 1 -Средние показатели агрохимических свойств дерново-среднеподзолистой супесчаной почвы

Глубина,	Гумус		рНсол	Обменный	Подвижный	Азот щел
СМ	%	т/га		калий,	фосфор,	гидр.,
				мг/кг	мг/кг	мг/кг
0-10	1,51	18,61	6,82	238,00	254,21	55,52
10-20	1,59	35,16	6,80	249,86	257,93	56,49
20-30	1,46	20,06	6,81	269,50	242,07	56,46
0-30	1,52	24,61	6,81	252,45	251,40	56,16

Наши исследования подтвердили, что содержание гумуса в дерновоподзолистой почве оказывает влияние на рост двулетних сеянцев сосны, связь между содержанием гумуса и показателями роста прямолинейная. Уравнения зависимости высоты (а), диаметра шейки корня (б) и фитомассы (в) двулетних сеянцев сосны от содержания в почве гумуса имеют следующий вид:

а) y = 8,78 + 2,38x; б) y = 2,11 + 0,51x; в) y = 163,76 + 52,4x, где x -содержание гумуса, %.

Коэффициент корреляции между содержанием гумуса на глубине 0-30 см и высотой сеянцев равен 0,51, диаметром шейки корня 0,52. С увеличе-

нием гумуса на глубине 0-30 см от 0,57 до 2,35 %, высота сеянцев увеличилась в 2,2 раза, масса сухого органического вещества в 3,4 раза.

Нашими исследованиями установлено, что содержание гумуса на разных глубинах не одинаково влияет на рост двулетних сеянцев сосны обыкновенной. Количество гумуса на глубине 0-10 см не оказало существенного влияния на рост сеянцев. На глубине 10-20 см содержание гумуса напротив, влияет на все биометрические показатели: высоту стволика, диаметр шейки корня, общую массу сеянцев в сухом состоянии, надземную и подземную массу, коэффициенты корреляции при достоверности 0,95 равны соответственно 0,49; 0,61; 0,43; 0,41; 0,51. Нами были получены уравнения зависимости между линейными показателями, массой сеянцев и содержанием органического вещества (табл. 2.).

Таблица 2 - Уравнения зависимости между биометрическими показателями (Y) двулетних сеянцев сосны обыкновенной и содержанием в почве гумуса (X)

Биометрические показа-	Глуби-	Уравнения регрессии	R^*
тели	на, см		
Высота стволика, см	10-20	$Y = 7.88 (1 - \exp(-0.55 X^{1.79}) + 7.3$	0,63
	20-30	$Y = 3.78 \cdot (1 - \exp(-2.48 \cdot X^{12.08}) + 9.69$	0,47
	0-30	$Y = 4,25 (1-exp (-0.21 X^{8.05})+9.51$	0,57
Диаметр корневой шейки,	10-20	$Y = 4.11 \cdot (1 - \exp(-0.94 \cdot X^{0.62}) + 0.04$	0,70
MM	0-30	$Y = 0.94 \cdot (1 - \exp(-0.30 \cdot X^{6.89}) + 2.21$	0,56
Надземная биомасса 100	10-20	Y=65,32 (1-exp (-5,33 10 ⁻⁵ X ^{101,46})+130,84	0,37
растений, г			
Подземная биомасса 100	10-20	$Y = 29,79 \cdot (1-\exp(-0.05 \cdot X^{3.76}) + 44,78$	0,61
растений, г	0-30	$Y = 24,90 \cdot (1-\exp(-0.28 \cdot X^{2,44}) + 41,29$	0,47
Общая масса 100 расте-	10-20	$Y = 76,83'(1-\exp(-8748857'X^{114,0})+178,95)$	0,32
ний, г			

^{*} Коэффициент корреляции между выровненными расчетными и фактическими данными.

Пределы значений (X) горизонт 0-10 см — $\min = 0.55$, $\max = 2.41$; горизонт 10-20 см — $\min = 0.40$, $\max = 3.38$; горизонт 20-30 см — $\min = 0.33$, $\max = 3.60$; горизонт 0-30 см — $\min = 0.53$, $\max = 2.66$.

Чем выше содержание гумуса в пахотном горизонте, тем лучше рост сеянцев и накопление ими сухого органического вещества. Причем на дерново-подзолистых почвах, которые в силу своего генезиса являются низко

плодородными, даже незначительное повышение содержания гумуса оказывает положительное влияние.

Влияние калия на рост и развитие сеянцев древесных пород в лесных питомниках имеют противоречивый характер. Н.Д. Васильев [4] установил, что на дерново-подзолистых почвах между количеством обменного калия и ростом сеянцев существенной связи нет. На супесчаных и суглинистых почвах эта связь гиперболическая, причем оптимальных размеров сеянцы достигают уже при обеспеченности калием в пределах от 9 до 12 мг/100 г почвы. Н.А. Смирнов [3] отмечает, что независимо от изменений в пахотном горизонте подвижных форм калия от 5-15 мг/100 г почвы масса трехлетних сеянцев ели не изменяется. Е.М. Романов [5] пришел к выводу, что на бедных, низко гумусированных и неоструктуренных почвах супесчаного гранулометрического состава низкая обеспеченность обменным калием может быть фактором лимитирующим рост сеянцев.

Наши данные согласуются с результатами исследований Е.М. Романова [5]. Причем следует отметить, что влияние обменного калия на рост сеянцев проявляется на глубине до 30 см. Коэффициент корреляции (r) между содержанием обменного калия и высотой сеянцев сосны обыкновенной на глубине 0-30 см составляет 0,61, диаметром шейки корня 0,57, надземной частью сеянцев 0,47, подземной частью сеянцев 0,51, общей массой сухого органического вещества 0,46. Уравнения зависимости между содержанием калия и биометрическими показателями двулетних сеянцев сосны обыкновенной представлены в табл. 3.

Таблица 3 - Уравнения зависимости между биометрическими показателями (Y) двулетних сеянцев сосны обыкновенной и содержанием в почве подвижного калия (X)

Биометрические показатели	Глуби-	Уравнения регрессии	R
_	на, см		
Высота стволика, см	0-20	$Y = 0.02^{\circ} (X - 122) + 10.28$	0,67
	10-20	$Y = 0.01^{\circ}(X - 55) + 10.21$	0,47
	20-30	$Y = 0.01^{\circ}(X - 75) + 9.67$	0,52
	0-30	$Y = 0.01^{\circ} (X - 96) + 10.11$	0,69
Диаметр корневой шейки, мм	0-10	$Y = 0.003^{\circ} (X - 122) + 2.46$	0,62
	10-20	$Y = 0.002^{\circ} (X - 55) + 2.33$	0,56
	20-30	$Y = 0.003^{\circ} (X - 75) + 2.38$	0,63
	0-30	$Y = 0.003^{\circ} (X - 96) + 21.42$	0,66
Надземная масса 100 сеянцев, г	0-10	$Y = 0.40^{\circ} (X - 122) + 130.96$	0,65
	10-20	$Y = 0.26^{\circ} (X - 55) + 128,79$	0,44
	0-30	Y= 0,31 (X- 96)+133,85	0,58
Подземная масса 100 сеянцев, г	0-10	$Y = 0.09^{\circ} (X - 122) + 42.59$	0,71
	10-20	$Y = 0.05^{\circ}(X - 55) + 43.47$	0,45
	0-30	Y= 0,07 (X- 96)+42,35	0,69
Общая масса 100 сеянцев, г	0-10	$Y = 0.48^{\circ} (X - 122) + 178.01$	0,67
	10-20	$Y = 0.29^{\circ} (X - 55) + 179,89$	0,42
	0-30	Y = 0.37 (X - 96) + 181.59	0,60

Примечание: пределы значений (X) горизонт 0-10 см — $\min = 100$, $\max = 560$; горизонт 10-20 см — $\min = 55$, $\max = 1210$; горизонт 20-30 см — $\min = 75$, $\max = 720$; горизонт 0-30 см — $\min = 96$, $\max = 820$.

Исследованиями Н.Д. Васильева [4], Н.А. Смирнова [3] установлено, что влияние фосфора на рост двулетних сеянцев сосны и трехлетних сеянцев ели на дерново-подзолистой почве незначительно. Однако в песчаных почвах подвижные соединения фосфора являются таким же лимитирующим фактором, как и гумус, степень насыщенности основаниями и кислотность [4].

Нами было установлено, что содержание подвижного фосфора в почве не оказало положительного влияния на рост двулетних сеянцев сосны. Коэффициент корреляции между содержанием фосфора на глубине 0-30 см и высотой столика и массой сеянцев свидетельствует о наличии умеренной обратной связи r = -0.31, r = -0.41.

Фосфор является важным элементом, который необходим растениям для нормального роста и развития. Е.М Романов [5] для сосны обыкновенной на дерново-подзолистой супесчаной почве рекомендует содержание подвижного фосфора на уровне минимальной достаточности 10-15 мг/ 100 г почвы. В нашем случае, средний показатель подвижного фосфора равен 25,10 мг/100 г, что вероятно является избытком для двулетних сеянцев сосны обыкновенной.

Благоприятная реакция почвенного раствора является важным фактором, влияющим не только на рост сенцев, но и на развитие почвообразовательных процессов. Древесные породы могут произрастать при очень большом интервале кислотности. Для главных пород установили, например, следующие диапазоны толерантности: ель – 3,5-7,0; сосна – 3,0-7,5; береза – 4,0-7,2; дуб – 4,5-8,0; бук – 4,0-7,5 и т.д. [4].

В результате исследований мы установили, что увеличение величины рН солевой вытяжки оказывает отрицательное влияние на изменение роста двулетних сеянцев сосны. Коэффициент корреляции между рН солевой вытяжки и высотой равен - 0,62, общей массой сухого вещества равен - 0,46. При увеличении значения рН происходит снижение биометрических показателей. Так как среднее значение рН солевой вытяжки на глубине 0-30 см составляет 6,81, а максимальной значение 7,3, можно сделать вывод, что после прохождения оптимального показателя, который для сосны обыкновенной на дерново-подзолистой почве находится в пределах 4,5-5,5 [5], дальнейшее повышение значения рН приводит к ухудшению роста сеянцев. Таким образом, нейтральная и слабощелочная реакция среды отрицательно влияют на рост двулетних сеянцев сосны обыкновенной. По-

лученные уравнения зависимости между ростом сеянцев и рН солевой вытяжки приведены в таблице 4.

Таблица 4 - Уравнения зависимости между биометрическими показателями (Y) двулетних сеянцев сосны обыкновенной и pH солевой вытяжки (X)

Биометрические показа-	Глубина,	Уравнения регрессии	R
тели	СМ		
Высота стволика, см	0-10	Y = 25,56 (exp (-0,01 (X-1) ^{2,3})	0,57
	10-20	$Y = 69,14 \cdot (exp (-0,1 \cdot (X-1)^{1,62})$	0,73
	20-30	$Y = 115,96^{\circ} (exp (-0,1^{\circ}(X-1)^{1,69}))$	0,65
	0-30	$Y = 40.85^{\circ} (exp (-0.01^{\circ} (X-1)^{2.54}))$	0,68
Диаметр корневой шей-	0-10	$Y = 5.88^{\circ} (exp (-0.01^{\circ} (X-1)^{2.24}))$	0,45
ки, мм	10-20	$Y = 8.01^{\circ} (exp (-0.03^{\circ} (X-1)^{2.11}))$	0,62
	20-30	$Y = 7.57 \cdot (\exp(-0.01 \cdot (X-1)^{2.51}))$	0,49
	0-30	$Y = 7.97 \cdot (\exp(-0.02 \cdot (X-1)^{2.12}))$	0,54
Подземная масса 100	10-20	$Y = 292 \cdot (exp (-0.01 \cdot (X-1)^{1.61}))$	0,60
сеянцев, г	0-30	$Y = 282.8^{\circ} (\exp(-0.01^{\circ}(X-1)^{1.60}))$	0,51
Общая масса 100 сеян-	0-10	$Y = 574,74 \text{ (exp (-0.001 \text{ (X-1)}^{3.69})}$	0,47
цев, г	10-20	Y = 972,37 (exp $(-0,01)$ (X-1) ^{2,75})	0,61
	0-30	Y = 796,86 (exp (-0,003 (X-1) ^{3,25})	0,54

Примечание: пределы значений (X) горизонт 0-10 см — $\min = 5.9$, $\max = 7.3$; горизонт 10-20 см — $\min = 6.1$, $\max = 7.2$; горизонт 20-30 см — $\min = 6.2$, $\max = 7.2$; горизонт 0-30 см — $\min = 6.1$, $\max = 7.3$.

В последние десятилетия земледелие столкнулось с проблемой переуплотнения почв, которое ведет к деградации почв и ландшафтов. Одной из причин снижения выхода стандартного посадочного материала являются ухудшение физических условий роста сеянцев. Уплотнение почвы приводит к снижению водопроницаемости, ухудшению водного и воздушного режима [6-10].

Установлено, что плотность сложения оказывает существенное влияние на рост и массу двулетних сеянцев сосны обыкновенной [3,5]. На глубине 0-30 см наибольшая масса сеянцев сосны, высота и диаметр шейки корня наблюдается при плотности сложения 1,11-1,20 г/см³, с увеличением плотности до 1,41-1,51 г/см³ масса сеянцев уменьшается в 2,4 раза.

Показатели коррелятивной связи между плотностью сложения на глубине 0-30 см и показателями роста свидетельствуют о наличии значительной обратной связи r = -0.66. Коэффициент корреляции между биомассой сеянцев и плотностью сложения равен -0.60.

Тесную зависимость между массой сеянцев и плотностью сложения на разных глубинах отражают данные таблицы 5, где участки с различным ростом и массой сеянцев сгруппированы по классам плотности, в различных слоях почвы.

Таблица 5 - Влияние плотности сложения на рост и массу двулетних сеянцевсосны обыкновенной

Глубина,	Плотность,	Линейные показатели		Масса сухого вещества, 100 шт/г		
СМ	сложения,	высота	диаметр	всего	надземной	подземной
	Γ/cm^3	стволика,	шейки		части	части
		СМ	корня, мм			
0-10	1,00-1,10	19,42	4,26	474,42	382,60	91,82
	1,11-1,20	13,22	3,06	254,21	195,67	58,54
	1,21-1,30	12,33	2,93	235,08	181,66	53,42
	1,31-1,40	10,73	2,56	206,07	159,49	46,58
	1,41-1,50	9,44	2,11	176,36	134,57	41,79
0-20	1,11-1,20	15,39	3,73	344,19	268,2	75,99
	1,21-1,30	13,38	2,98	236,39	183,19	53,20
	1,31-1,40	11,68	2,77	229,53	175,9	53,63
	1,41-1,51	9,53	2,21	170,63	129,64	40,99
0-30	1,11-1,20	18,94	4,17	443,63	347,81	95,82
	1,21-1,30	13,96	3,18	273,81	213,34	60,47
	1,31-1,40	12,80	3,09	249,62	193,82	55,80
	1,41-1,51	8,79	2,31	181,95	137,61	44,34

Из таблицы видно, что при увеличении плотности сложения уменьшаются биометрические показатели сеянцев – высота, диаметр шейки корня; масса хвои, стебля, корней. Например, при увеличении плотности с 1,00-1,10 г/см³ до 1,41-1,51 г/см³ на глубине 0-30 см высота, диаметр шейки корня и масса подземной части снизилась в 2 раза; общая масса сеянцев, масса надземной части снизилась в 2,5 раза.

Структура вертикального распределения подземной массы растений отражает их отношение к водно-физическим характеристикам почвенного

профиля. Рост сеянцев и накопление массы в первую очередь зависят от глубины залегания плотного горизонта, чем ближе к поверхности залегает плотный горизонт, тем хуже рост и меньше масса сеянцев (табл.6).

Таблица 6 -Влияние глубины залегания плотного горизонта на размеры и массу двулетних сеянцев сосны обыкновенной

Плотность	Глубина зале-	Масса 100 сеян-	Высота стволи-	Диаметр шей-
сложения,	гания плотного	цев в воздушно-	ка, см	ки корня, мм
г/ с м ³	горизонта, см	сухом состоянии		
1,00-1,30	0-10	274,18	13,69	3,18
	10-20	344,08	15,39	3,73
	20-30	414,59	17,86	3,89
1,30-1,40	0-10	203,18	10,89	2,61
	10-20	257,56	13,09	3,02
	20-30	246,56	14,63	3,33
1,41-1,60	0-10	173,03	9,44	2,11
	10-20	172,80	10,07	2,32
	20-30	213,40	11,04	2,66

Наибольшее влияние на рост сеянцев и накопление ими сухого органического вещества оказывает плотность сложения на глубине 0-10 см. Коэффициент корреляции между плотностью сложения и высотой стволика равен - 0,67, диаметром шейки корня r = -0,61, надземной биомассой r = -0,46, общей массой сухого органического вещества r = -0,54. Таким образом, чем выше плотность сложения на глубине 0-10 см, тем хуже рост сеянцев. На накопление сеянцами подземной массы большее влияние оказывает плотность горизонта на глубине 10-20 см, r = -0,54.

Нами были получены уравнения зависимости между биометрическими показателями и плотностью сложения на глубине 0-10 см, 10-20 см, 20-30 см, 0-30 см (табл. 7).

Оценка физических свойств почвы необходима для их регулирования при окультуривании и научного обоснования различных агротехнических и мелиоративных мероприятий.

Таблица 7 - Уравнения зависимости между биометрическими показателями (Y) двулетних сеянцев сосны обыкновенной и плотностью сложения (X)

Биометрические	Глубина,	Уравнения регрессии	R
показатели	CM		
Высота стволика, см	0-10	$Y = 28,29^{\circ} (exp (-1,55^{\circ} (X-1)^{0,44}))$	0,69
	10-20	$Y = 15,02^{-} (exp (-2,50^{-} (X-1)^{2,69}))$	0,54
	20-30	$Y = 18,60^{\circ} (exp (-1,00^{\circ} (X-1)^{1,07})$	0,48
	0-30	$Y = 22,08^{\circ} (exp (-1,70^{\circ} (X-1)^{1,03}))$	0,67
Диаметр корневой шейки,	0-10	$Y = 3.77^{\circ} (\exp(-1.72^{\circ}(X-1)^{1.39}))$	0,61
MM	10-20	$Y = 3.97^{\circ} (\exp(-1.47^{\circ}(X-1)^{1.47}))$	0,65
	20-30	$Y = 4.22^{\circ} (exp (-0.91^{\circ} (X-1)^{1.07})$	0,39
	0-30	$Y = 4,66^{\circ} (exp (-1,73^{\circ} (X-1)^{1,24}))$	0,68
Подземная масса 100 се-	0-10	$Y = 96,66^{\circ} (exp (-1,41^{\circ} (X-1)^{0,64}))$	0,55
янцев, г	10-20	$Y = 93,63^{\circ} (exp (-1,36^{\circ} (X-1)^{0.91})$	0,55
	20-30	$Y = 95,68^{\circ} (exp (-1,20^{\circ} (X-1)^{0.91})$	0,44
	0-30	$Y = 93.85^{\circ} (exp (-1.87^{\circ} (X-1)^{1.81})$	0,61
Надземная масса 100 се-	0-10	$Y = 416,99^{\circ} (exp (-1,93^{\circ} (X-1)^{0,61}))$	0,50
янцев, г	10-20	$Y = 349,79^{\circ} (exp (-2,47^{\circ} (X-1)^{1,94}))$	0,45
	0-30	$Y = 412,04^{\circ} (exp (-2,21^{\circ} (X-1)^{0.96}))$	0,49
Общая масса 100 сеянцев,	0-10	Y = 497,39 (exp $(-1,90)$ (X-1) ^{0,69})	0,57
Γ	10-20	$Y = 499,42^{\circ} (exp (-1,43^{\circ} (X-1)^{0,66}))$	0,44
	0-30	$Y = 499,65^{\circ} (exp (-2,15^{\circ} (X-1)^{1,04}))$	0,54

Примечание: пределы значений (X) горизонт 0-10 см — $\min = 1,03$, $\max = 1,47$; горизонт 10-20 см — $\min = 1,13$, $\max = 1,54$; горизонт 20-30 см — $\min = 1,23$, $\max = 1,60$; горизонт 0-30 см — $\min = 1,16$, $\max = 1,45$.

Наши исследования показали, что лучший рост и накопление двулетними сеянцами сосны органической массы наблюдается при плотности сложения в пахотном горизонте 1,11-1,20 г/см³, но при плотности 1,31-1,40 г/см³ сеянцы также имеют стандартные размеры (табл. 2). Таким образом, при плотности сложения 1,1-1,4 гсм³ двулетние сеянцы сосны имеют стандартные линейные показатели.

Выводы.

1. На рост сеянцев сосны обыкновенной на дерново-подзолистой супесчаной почве большое влияние оказывает содержание гумуса. С увеличением гумуса на глубине 0-30 см с 0,57 до 2,35 % высота сеянцев увеличилась в 2,2 раза, масса сухого органического вещества в 3,4 раза.

- 2. Рост двулетних сеянцев сосны зависит от содержания гумуса, обменного калия, кислотности. Наибольшее влияние на рост сеянцев сосны оказало содержание гумуса на глубине 10-20 см. Близкая к нейтральной и слабощелочная реакция среды оказывает отрицательное влияние на рост двулетних сеянцев сосны. Содержание подвижного фосфора не оказало влияние на рост сеянцев сосны.
- 3. Оптимальная для роста сеянцев сосны является плотность сложения 1,11-1,20 г/см³. Наибольшее влияние на рост сеянцев оказывает плотность сложения на глубине 0-10 см, коэффициент корреляции равен 0,67.

Работа выполнена в рамках реализации Φ ЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы» (государственный контракт № 16.552.11.7050 от 29 июля 2011 г.) с использованием оборудования ЦКП «ЭБЭЭ» Φ ГБОУ ВПО «МарГТУ».

Список литературы

- 1. Чурагулова З.С. Почвы лесных питомников Южного Урала: состояние, изменения, оптимизация М.:ТИССО, 2003. 312с.
- 2. ОСТ 56-81-84 Полевые исследования почвы. Порядок и способы проведения работ, основные требования к результатам.
- 3. Смирнов Н.А. Выращивание посадочного материала для лесовосстановления. М.: Лесная пром-сть, 1981. 169 с.
- 4. Васильев, Н.Д. Интенсификация выращивания сеянцев сосны обыкновенной в связи с почвенными условиями в лесном Среднем Заволжье: автореф. дис. ... канд. с.-х. наук. М.: МЛТИ, 1982. 20 с.
- 5. Романов Е.М. Выращивание сеянцев древесных растений: биоэкологические и агротехнические аспекты: научное издание. Йошкар-Ола: МарГТУ, 2000. 500 с.
- 6. Марфин Н.Н. Экокультура: в поисках выхода из экологического кризиса: хрестоматия по курсу охраны окружающей среды. М.: Изд-во МНЭПУ, 1998. 344 с.
- 7. Волокитин М.П., Хан К.Ю., Сон Б.К., Золотарева Б.Н. Оценка деградации некоторых агрофизических показателей почв // Почвоведение. 1997. № 1. С. 57-63.
- 8. Подвойский М.Ф. Влияние углубления пахотного слоя черноземов на их плодородие // Почвоведение.1972. №6. С.95-102.
- 9. Ревут И.Б. Лебедева В.Г., Абрамов И.А. Плотность почвы и ее плодородие // Сб. тр. по агрономической физике. М., 1962. Вып. 10. С.154-165.
- 10. Филев Д.С. Головко А.И. Водно-физический режим почвы в зависимости от глубины вспашки на постоянных участках кукурузы // Докл.ВАСХНИЛ. 1967. № 10. С.15-19.