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6. Dynamics of boundary layer 
6.1. Boundary layer structure 
During the last twenty years mathematical modeling of turbulent flows of flu-

id has been successfully developed in several directions at once [1, 19-54, 59-
70, 74-128]. Methods of direct numerical simulation (DNS) [66, 116], large ed-
dy simulation (LES) [140], and different models, based on Navier-Stokes equa-
tions averaged according to Reynolds's method [28-38, 44, 51] have to do with 
these directions. The theory of hydrodynamic instabilities and transition to tur-
bulence was proposed, which is based primary on the mathematical ideas about 
behavior of the dynamical systems [141-142]. The fractal geometry theory de-
veloped by Mandelbrot [143] has been used to explain the chaos and intermit-
tence in the hydrodynamic turbulence [144-145]. To obtain the numerical solu-
tions of applied multidimensional problems the effective numerical algorithms 
have been created [146-147]. 

The boundary layer is a typical self organized flow formed around any rigid 
body moving in the viscose fluid at high Reynolds number. To illustrate the 
common problems of the boundary layer theory let us consider the structure of 
the boundary layer on the flat plate in adverse pressure gradient - see figure 6.1. 
This flow includes the laminar boundary layer (1), the transition flow (2), the 
turbulent boundary layer (3) and the separated turbulent flow (4).   

The laminar boundary layer is a well predicted and sufficiently investigated 
flow. But this flow is not a stable at high Reynolds number, because it can be 
like an amplifier for the waves of small amplitude.  
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The transition layer has a complex structure considered by many authors [62, 
141, 145, 149-151]. As it was shown by Jigulev [149] and Betchov [150] this 
flow domain includes seven sub-regions: 

1) the laminar flow region in which the small disturbances are gener-
ated. This part of flow is considered often as a starting point of transition 
layer. The Reynolds number of initial point of transition layer is a very sensi-
tive to the boundary conditions on the wall and in the outer flow. The esti-
mated value of the Reynolds number of transition is  5

0 104/Re ⋅≈= νUxtrtr  
and as high as 6104Re ⋅≈tr ;  

2) the quasi-laminar flow region in which the amplitude of linear 
waves (called  the Tollmien-Schlichting waves) grows up to the critical value 

2
0 10/ −≅UUδ . The typical scale of this region is about Hx 210≈∆ , where  H  

is a local thickness of the boundary layer; 
3) the nonlinear critical layer where the interaction between waves and 

main flow leads to the new unstable state. The typical scale of this region can 
be estimated as Hx 10≈∆ ; 

4) 3D waves region with scale  Hx ≈∆  . In this region initial two-
dimensional waves are transformed into three-dimensional waves; 

5) the region of the secondary instability in which the short length 
waves are generated. The typical scales of this zone are about 

Hx 1.0≈∆ , 1
0 10/ −≅UUδ  ; 

6) the Emmons sports region with typical scales Hx ≈∆ , 
1

0 103/ −⋅≅UUδ . In this part of flow the non-equilibrium process leads to the 
turbulent spectrum of velocity fluctuations; 

7) the initial region of the turbulent flow in which 2
0 103/ −⋅≅UUδ . 

The transition from the laminar flow to the turbulent flow is a very attractive 
phenomenon from the mathematical point of view. Really the initial laminar 
flow, which is not consisting of any chaotic waves, then suddenly transforms to 
the state with a chaotic behavior. This problem of transformation called "dynam-
ical chaos" has been investigated by many authors (see for instance [142, 145]).  

The theory of the "dynamical chaos" is based mostly on the analyses of the 
simplifier dynamical systems (Lorenz-like chaos) which can't be used directly 
for the boundary layer problem.  

The turbulent boundary layer is characterized by chaotic pulsation of the flow 
parameters. The surface which separates the turbulent stream from the outer 
flow looks like a rough surface. The thickness of the turbulent boundary layer in 
zero pressure gradient increases with a distance approximately as a power func-
tion 2.0Re37.0/ −≈ xxH , and the skin friction coefficient slowly decreases with the 
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Reynolds number increasing as   2.0Re059.0 −≈ xfc where ν/Re 0xUx =  (see 
Schlichting  [61]).  

 
               

 

 
 

Figure 6.1: A) The boundary layer on the flat plate in adverse pressure 
gradient: 1 - laminar boundary layer; 2 - transition layer; 3 - turbulent boun-
dary layer; 4 - turbulent separated flow; B) the thickness of the laminar 
boundary layer in the air flow at smU /47.310 = ; C) the mean height of the se-
parating boundary layer according to Simpson et al [148]      

  
The turbulent boundary layer in adverse pressure gradient separates out from 

the rigid surface and the boundary layer thickness increases as it is shown in 
Figure 6.1,c. This part of the boundary layer is not so well predictable as a lami-
nar flow, thus till now the separated turbulent boundary layers were studied only 
in partial cases primary by experimental way (see Simpson et al [148]).   

The turbulent boundary layer can be modelled on the theory of turbulence 
which was explained in Chapter 2. But it is a very interesting fact that the lami-
nar flow and transition layer also can be described by the equation system (2.14) 
derived from the Navier-Stokes equations (NSE) due to the special type of trans-
formation (2.1). Let us consider the application of the turbulence theory to the 
quasi-laminar boundary layer, i.e. to the boundary layer flow which has some 
symptoms of turbulent flow.                
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6.2. Laminar boundary layer  
The general solution for the laminar flow can be found on the base of the 

boundary layer approximation of the Navier-Stokes equations in the Prandtl's 
form:  
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Here the pressure gradient is given by equation (4.17), thus 

ρ
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0 = − .                                         (6.2) 

To derive model (6.1) from the Navier-Stokes equations we should suppose 
that  

a) the laminar boundary layer is a two-dimensional flow, i.e. 
),0,(),( wuzx == vv ; 

b) the normal to the wall velocity gradient sufficiently exceeds the 
parallel to the wall velocity gradient, i.e. xuzu ∂∂>>∂∂ // ; 

c) the normal to the wall pressure gradient is so small that it can be 
neglected, therefore the pressure distribution is described by the Bernoulli 
equation (6.2). 
It can be shown that the sufficient condition, to satisfy suppositions b)-c), is 

that the Reynolds number computed on the distance from the plate edge has an 
extremely high value, i.e.   1/Re 0 >>= νxUx .  

 Boundary conditions for the quasi-linear diffusion equation (6.1) can be set 
as follows: 

 
)(),(:,0
0)0,()0,(:0,0

)0(),0(:0,0
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                                                 (6.3) 

 
The first equation (6.1) can be satisfied automatically if we define a flow 

function as follows  
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ˆ                                             (6.4) 

Problem (6.1)-(6.3) has a self-similarity solution for the boundary layer in a 
zero pressure gradient. In this case constUxU == )0()( 00 ,  thus the first and third 
condition (6.3) are identical that means that a solution of this problem depends 
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on  the universal variable  0// Uxz νη = . Put )(ˆ 0 ηνψ fUx= , then the velocity 
components can be rewritten as  functions of the universal variable, i.e., 

)(
2
1ˆ

,
ˆ 0

0 ff
x
U

x
wfU

z
u −′=

∂
∂

−=′=
∂
∂

= η
νψψ                    (6.5) 

Substituting these expressions in the second equation (6.1) one can find that 
the universal function  )(ηf  is described by the following equation (see, for ex-
ample, [51, and 58]): 

02 =′′+′′′ fff                                               (6.6) 

The boundary conditions for equation (6.6) (these conditions can be derived 
from (6.3)) have a form 

1)(,0)0()0( =∞′=′= fff                               (6.7) 

The problem (6.6-6.7) can be solved numerically using the algorithm de-
scribed above in subsection 2.4.2. For the initial iteration one can put 

33206.0)0( =′′f  (see [51]) that gives in practice the precise solution. Obviously 
that it's impossible to satisfy last condition (6.7) in a numerical procedure. 
Hence instead of it as usual the boundary condition in the outer region has used, 

9999.0)( =′ ef η  where 8≈eη  [51]. Thus the boundary layer depth can be defined 
as a point where, for instance, 8// 0 =Uxze ν , i.e.  

0/)( UxxH ν∝                                     (6.8) 

This function is shown in Figure 6.1,b to illustrate the typical scale of laminar 
boundary layer in the air flow at  smU /47.310 = . Therefore the universal variable 
can be presented as  )(/ xhz=η , where 0/)( Uxxh ν=  is the boundary layer char-
acteristic thickness  

The boundary layer thickness is not a constant; it slowly increases down to 
the stream so that 

     
x
U

dx
dhU

dt
dh 0

0 2
1 ν

==                                         (6.9) 

 
This equation gives the normal to the wall velocity scale which can be de-

fined as  dtdhw /0 = . With two characteristic scales of velocity equations (6.5) 
can be rewritten as follows: 

ffwwfUu −′=′= η00 /,/                                   (6.10) 

The normalised velocity profiles in the laminar boundary layer are shown in 
Figure 6.2. The normal to the wall velocity normalised on the scale dtdhw /0 =  
has a limit value at ∞→η : 72.1/ 0 =ww . The positive value of this velocity com-
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ponent means that the stream lines starting from the boundary layer then pene-
trate in the outer flow region. 

 

 
 

Figure 6.2: The normalised velocity profiles in the laminar boundary layer 
in zero pressure gradient: 1 - 0/Uu ; 2 -  0/ ww  

 
The normal to the wall velocity scale decreases with distance as  

5.0
00 Re5.0 −= xUw . Thus near the transition layer this scale has a very small value 

which has never been taken into account in the theory of transition to turbulence.  
The skin friction coefficient can be defined for the laminar flow as 

xf fUzuc Re/)0(2)2//()/( 2
0 ′′=∂∂= ν . Substituted in this formula the numerical 

value of the second derivative,   33206.0)0( =′′f , which was calculated above, we 
have  xfc Re/664.0= . 

The self-similarity solutions (6.5) found for the laminar flow (called the 
Blasius flow) is only type of the self-similarity solutions of the Navier-Stokes 
equations (NSE). Let us give a proof that the Blasius flow can be described by 
equation system (2.14). Really all solutions of the equation system (2.14) which 
was derived from NSE are presented by the self-similarity functions. Therefore, 
we can select from (2.14) also solution for the Blasius flow. First of all note that 
in this two-dimensional flow   0v =−=Ψ xy huh ,  and uhx=Φ , hence we have 

       

0
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Here ηuhwW x−=~ . Let  )(~
0 ηfhUW x−= , then the generalised form of  (6.5)  

and (6.6) can be found from first eq. (6.11) and from the definition of W~  imme-
diately as follows    

)(, 00 ffUhwfUu x −′=′= η                                  (6.12) 
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The Blasius solution corresponds to the special case when  

2)/( 0 =Uhhxν ,  0/)( Uxxh ν= .                            (6.13) 

In this case the second eq. (6.12) has a form  
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The boundary layer approximation (6.1) is applicable only for very high 
Reynolds number, i.e. for 1/Re 0 >>= νxUx . Hence the term in the brackets 
which is proportional to xRe/1  can be neglected in (6.14) and finally we have 
equation (6.6).  

6.3. Transition to turbulence  
6.3.1. Continuous transition to turbulence  
Passing through the transition layer the laminar stream transforms into the 

turbulent flow. There are several models of transition to turbulence (see  [58, 
141, 145, 149] and other). From the point of view of the turbulence theory con-
sidered above the parameter characterized the dynamical roughness structure, 
i.e. )/arctan( xy hh=α , increases in the transition layer from a zero up to 2/πα = , 

and the second turbulent velocity scale, 22
*0 / yxt hhuhw +=+ , increases from a zero 

up to  14.00 ≈+w . Consequently the 2D laminar Blasius flow transforms into 3D 
turbulent flow.  

The general solution (2.16) of the turbulent incompressible flow model (2.14) 
can be used to analyze the transition from the Blasius flow to the turbulent flow.  
Put  )0(),0( 21 ηη uhAuhA yx ==  in this solution then the random velocity components 
can be written as follows 
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Put )(~
0 ηfUhW x−=  as in the case of the Blasius flow then we have  

∫ +
=

η

η
η

ν 0 22
0

1 n
dfhhUI x                                         (6.16) 
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with  boundary conditions  

00 /)0()0(,/)0(,0)0( UufhUhff xt η=′′=′= .                   (6.18) 

Put  2)/( 0 =Uhhxν  in (6.17) as for the Blasius flow solution, therefore    

                          ),(/),,( 0 ytQUxtyxh += ν ,                            (6.19) 

where ),( ytQ  is an arbitrary function.  

 
6.3.2.  3D Transition to turbulence 
The first scenario of spatial continuous transition to turbulence is that  0=th  

and 33206.0)0( =′′f . In this case the boundary conditions (6.18) are similar to the 
Blasius flow conditions. For 0=yh   we have exactly the Blasius flow solution - 
see Figure 6.3. Put 0/UxQ ν<<  then the dynamical roughness parameters are 
given by  

22 Re4/1 yx hn +≈ ,     )Re2arctan( xyh=α .                        (6.20) 

 
As it follows from this equations if yh  increases then the dynamical rough-

ness parameters also increase and the laminar boundary layer velocity profile 
(the Blasius profile (1) in Figure 6.3) transforms into the turbulent boundary 
layer velocity profile (6) - see Figure 6.3.  
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Figure 6.3: Continuous transition from the laminar flow (the Blasius ve-
locity profile (1)) to the turbulent flow (the logarithmic velocity profile (6)). 
Profiles 1-6 are computed on (6.17)-(6.18) for 0=th  and for 

2;3/4;1;3/2;3/1;0=yh  respectively 

 

 
Figure 6.4: Continuos transition to turbulence: 1 - the mean velocity pro-

file in the turbulent boundary layer according to Van Driest [65],  2, 3 - the 
mean velocity profiles in the transition layer computed on the model (6.24), 
(6.25) for   5.3,91.0=yh  respectively 

 
Theoretically the logarithmic profile in this model can be only at ∞→n , but 

practically the logarithmic asymptotic is realised for 5.3=n  - see Figure 6.4.   It 
can be explained by the asymptotic behavior of a solution of equation (6.17) at 

∞→η : )()()( nnf βηγη −≈ , where )(),( nn γβ  are some parameters. Obviously, 
that for the Blasius flow 1)0(,72.1/)()0( 0 ==∞= γβ ww , and in a common case 

nn 2/1)( ≈β  for 1≥n . Therefore )(ηI  can be estimated for ∞→η  as follows 
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Substituted this expression in the first equation (6.15) and supposed that 
2/πα =  one can derive the asymptotic formula for the streamwise velocity gra-

dient, i.e.   
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Here 32 4/12/ nnb ≈= γ  for 1≥n . Used the inner layer variables for the mean 
velocity scaling the last equation can be rewritten as follows 
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Calculated the exponent b  for 5.3=n we have 006.0≈b . Thus in this case the 
power function factor in the right part of equation (6.23) is about unit for 

33 10/10 ≤≤− λz  hence equation (6.23) leads to the logarithmic profile asymptotic 
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1  

Here += λκ /0Ie  is the Karman constant. Using the relationship κλ /0Ie=+   
third boundary condition (6.18) in a case of mean velocity profile can be trans-
formed as follows 
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Using the inner layer variables we can rewrite the model of spatial transition 
to turbulence in the form       
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where  )Re2arctan( xyh=α , 22 Re4/1 yx hn +≈ , ,/ ++= hzη  2/1/0 == νUhhR x  (as 
for the Blasius flow), ++ = λnh , κλ /0Ie=+ . The boundary conditions for this 
model are given by 

 ++ =′′=′== 0/)0(,0)0(,0)0(,0)0( 0 Unefffu I κ                       (6.25)  

The mean velocity profiles computed on the model (6.24) for  5.3,91.0=yh  
(the solid lines 2,3) together with the mean velocity profile in the turbulent 
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boundary layer proposed by Van Driest [65] (the symbolised line 1) are shown 
in Figure 6.4. The logarithmic asymptotic of the profile (3) has a form  

tczu += +−+ ln1κ , where 1566.0−=tc .  

 
Figure 6.5: Continues transition to turbulence: 1 - the mean velocity pro-

file in the turbulent boundary layer according to Van Driest [65],  2-4 - the 
mean velocity profiles in the transition layer computed on the model (6.24), 
(6.26) for   5.3=yh   and 537.2;1;0=ϖ  respectively 

 
The main difficulty of model (6.24) is that the estimated streamwise velocity 

profile (3) is not really the logarithmic profile in the turbulent boundary layer 
over smooth surface as it should be, but it is the logarithmic profile which can be 
in the turbulent boundary layer over a rough surface. Thus the skin friction coef-
ficient of this flow is higher then in the turbulent boundary layer with the similar 
thickness and free stream velocity.  

The second scenario of continuous transition to turbulence is that 1≈n   and 
ϖ=xt hUh 0/ . In this case the transition layer model is identical to (6.24) with 

boundary conditions 
++ =′′=′== 0/)0(,)0(,0)0(,0)0( 0 Unefffu I κϖ     (6.26) 

Using the constant of the logarithmic profile, we can estimate an additional 
parameter, i.e. ϖ . The mean velocity profiles computed on the model (6.24), 
(6,26) for 5.3=yh   and 537.2;1;0=ϖ  are shown in Figure 6.5 - the solid lines (2-
4) respectively.  

This model consists of three parameters κϖ ,,n  while in the turbulent bound-
ary layer there is only one parameter - the Karman constant.  

 
6.3.3.  2D Transition to turbulence 
It's a well known fact that the transition layer includes the quasi-laminar flow 

region in which the amplitude of linear Tollmien-Schlichting waves grows up to 
the critical value 2

0 10/ −≅UUδ . This 2D transition zone can be described by the 
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model (6.24) rewritten in the outer region variables. Put in system (6.24) 
0,0 == nα . In this case we have 2D transition model   

03

3

2

2

=+
ηη d

fd
d

fdRf ,   Ihf e
c

d
du

U
−=

2
Re1

0 η
 , ∫=

η

η
0

fdRI                      (6.27) 

with boundary conditions 
 0)(,)0(,0)0(,0)0( Uuffu =∞=′== ϖ                    (6.28) 

where 2/1/0 == νUhhR x  (as for the Blasius flow), ν/Re 0hUh = .  

This model depends on only free parameter xt hUh 0/=ϖ . The streamwise ve-
locity profiles computed on this model for 10;1;0=ϖ  are shown in Figure 6.6 
left,  by the solid lines (1-3) respectively. This solutions are similar to the Bla-
sius flow solutions for a laminar flow with gas injection (see Cebeci & Brad-
shaw [51]).  

The numerical data for dimensionless velocity gradient, 0/)0(2/Re Uuc hf η= ,  
are plotted in Figure 6.6 right. These data can be approximated as follows (see 
the solid line in Figure 6.6 right) 

75.0286.0332.02/Re ϖ+=hfc                                    (6.29) 

 

where xh ReRe =  as for the Blasius flow.  

There is no a logarithmic profile in 2D flow, but in this type of transition the 
drag increases up to the value which is typical for the turbulent boundary layers. 
Really, substituting an expression of the roughness surface parameter 

2/Re)/(2/ *0 fhtxt cuhhUh ==ϖ  in formula (6.29) we can derive an equation for 
the skin friction coefficient as follows 

125.0375.075.0
*

0 Re)2/()/2(286.02/2/ −+= xftff cuhcc                   (6.30) 

where xfc Re/664.00 =  is the skin friction coefficient for the Blasius flow.  

Supposing in the equation (6.30) that 0
ff cc >>   and expressing the skin fric-

tion coefficient in an explicit form, finally we have 
2.02.1

* Re)/2(27.0 −≈ xtf uhc                                     (6.31) 

For 14.0/ * =uht  the last equation exactly gives the Schlichting formula for the 
skin friction coefficient in the turbulent boundary layer, i.e.  2.0Re059.0 −≈ xfc  (see 
Schlichting [61]). It means that the transition to turbulence is characterized 
mostly by the parameter xt hUh 0/=ϖ  which has a high value 10≈ϖ  in the begin-
ning of the turbulent boundary layer. Hence in this case another scaling should 
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be proposed to balance the dynamical roughness parameters effect on the turbu-
lent flow.   

 

 
 

Figure 6.6: The velocity profiles in 2D transition layer calculated on  
(6.27)-(6.28) for 10;1;0=ϖ  - the solid lines (1-3) respectively (left); the nor-
malised skin friction coefficient versus the dynamical roughness surface pa-
rameter xt hUh 0/=ϖ  (square symbols) together with the approximated solid 
line (right)   
  
              
On the other hand as it was shown in subsection 2.4.3, in the turbulent 

boundary layer also we have 14.0/ * =nuht . Thus the typical value of the dynami-
cal roughness gradient parameter is about 1≈n . Taken into account that 

222 Re4/1 yyx hhn ≈+≈  we can conclude that the transversal gradient 1≈yh ,  there-
fore 2/)Re2arctan( πα ≈= xyh . Obviously that a negative value 1−≈yh  also avail-
able with the same probability as a positive value, because as it follows from 
second equation (6.15) α2sinv~ ∝ , and hence the mean transversal velocity 

02sinv~ =∝ α . 

6.4. Spectral characteristics of turbulent flows   
The turbulent boundary layer can also be described by equations system 

(6.24).  Put 2/πα =  in the first equation (6.24). Substituting an universal vari-
able ηξ n=  and an universal function fn )/(1 ϖχ =  in the second and third equa-
tions (6.24) we have  

2)/(1 ++

−

+

+

+
=

λz
e

dz
du I

 ,    ∫ +
=

ξ

ξ
ξχ

0
2

1

1
dRI t ,                          (6.32) 

0)1( 2
1

2
2

2
1

2

1 =
∂
∂

+
∂
∂

+
∂
∂

ξ
χ

ξ
ξξ

χ
χtR ,      
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Here  2/ nhhR tt ν=  is the Reynolds number calculated on the dynamical 
roughness parameters. The boundary conditions for this model can be proposed 
as follows 

 au =′′=′==+ )0(,1)0(,0)0(,0)0( 111 χχχ                        (6.33)  

 
Where a  is a free parameter. To establish this parameter it can be claimed 

that the streamwise mean velocity profile has a logarithmic asymptotic at 
++ >> λz . Surmising that )(),(lim 0 tt RIRI =∞→ ξξ  we have from the first equation 

(6.32) +−+++ = zedzdu I // 0λ , and therefore  κλ /0Ie=+ .  
The last equation gives the continuous spectrum of the turbulent scales  

)( tR++ = λλ . On the other hand the mean velocity profile in the logarithmic layer 
can be characterized by one scale. To solve this problem note, that equation 

κλ /0Ie=+  can be rewritten in the form  
)](exp[ 00 tt RIRw −=+ κ ,                              (6.34) 

Here *0 / nuhw t=+  is the second turbulent velocity scale.  

For an uniqueness of the mean velocity profile one can suppose that for 
const=κ  the second turbulent velocity scale has a stable value at small varia-

tions of the parameter  tR , i.e.  0/0 =+
tRw δδ  (or for constw =+

0  the Karman con-
stant has a stable value, i.e.  0/ =tRδδκ ).  It gives 22.1* ≈= tt RR  and 14.00 ≈+w  for 

41.0=κ . The fundamental turbulent boundary layer scale can be defined as 
71.8/)(

0

*
0 ==+ κλ tRIe . The mean velocity profile calculated on this model for 
22.1=tR , 71.80 =+λ  and for 41.0=κ  is shown in Figure 2.4, a.  

The function 0/1 Ie−+ = κλ  can be considered as a spectral density. The inverse 
length scale versus the Reynolds number is shown in Figure 6.7, a.  This type of 
a spectral density is similar to the spectral density of the streamwise velocity 
fluctuations in the turbulent boundary layers. The function )(00 tRww ++ =  is shown 
in Figure 6.7, b. This type of spectrum is similar to the spectral density of the 
transversal velocity pulsation (see Tennekes & Lumley [152]). Both functions 
represent the constructive model of the hydrodynamic chaos in this theory of 
turbulence. 

To compare the spectral density with experimental data we can suppose that 
hht ω∝ , where ω  is the characteristic radian frequency. Therefore the Reynolds 

number calculated on the dynamical roughness parameters depends on the fre-
quency as  

*
2

*
2
*

2
*

22 Re/// +++ === ukHunhRt λνωλνω                             (6.35) 
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Here +
*λ  is the typical turbulent length scale of the streamwise velocity pulsa-

tion, Uk /ω=  is the flow wave number (Taylor's frozen turbulence hypothesis), 
ν/Re ** Hu= . The equation (6.35) can be proved easily, because the non-linear 

part of the model (6.32) depends on the random parameter tR  only, and it's inde-
pendent of time. The spectral density of the streamwise velocity pulsation can be 
defined as follows 

2

0

22 ')('1lim)(')( udttu
T

dudkkF
T

T
===∫ ∫∫ ∞→

ωω                             (6.36) 

There are several models which have been proposed to describe the spectral 
density in the turbulent boundary layers (see Simpson et al [148], Tennekes & 
Lumley [152], Perry et al [154] and other). The widely used spectral density in 
the logarithmic layer is given by  12

*)( −≈ kukF .  Instead of this we suggest that the 
spectral characteristic of the turbulent flow is related to the eigen spectrum of 
the problem (6.32)-(6.33), thus 

 )]([2
*

2
* 0)( kRI

KK
teHucHuckF −

+ == κ
λ

                                  (6.37) 

 Here  Kc  is the normalizing factor which can be calculated from (6.36). 

 
 

Figure 6.7: The inverse length scale  +λ/1 (a) and the normalised velocity 
scale κ/0

+w  (b) versus the Reynolds number calculated on the dynamical 
roughness parameter 
 
Suggesting that the flow wave number in the logarithmic layer depends on 

the dynamical roughness Reynolds number  as the  linear function, i.e. tRk ∝ , 
we have 

 

2
*

*
2
*

2
*

*
2
*2 Re47.0Re)('

λλλ +++ ∫∫ ≈==
u
ucdR

u
ucdkkFu KtK ,                        (6.38) 

therefore *
2
*

22
* Re/'13.2 uuucK

+= λ .  
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The spectral density computed on (6.35), (6.37) is shown in Figure 6.8 (solid 
lines) together with the experimental data by Hussain & Reynolds [153] ob-
tained in the turbulent channel flow. The experimental values and estimated pa-
rameters for the data are listed in Table 6.1. The boundary layer 
height cmH 175.3= , the mean velocity on the channel axis  smU /8.130 = , the 
Reynolds number of the turbulent boundary layer 28600/Re 0 == νHU , and  

1220Re* = . 

As it was established both spectral density parameters Kc  and +
*λ  slowly de-

pend on the distance from the wall. In the inner layer the experimental data is in 
a good agreement with the predicted spectral density (a, b). But in the outer re-
gion the correlation is not so good (c, d). It can be explained by the mixed layer 
contribution in the velocity pulsation.  

 
 

 
Figure 6.8: The spectral density of the streamwise velocity pulsa-

tion in the turbulent channel flow computed on (6.37) (solid lines) and 
the experimental data by Hussain & Reynolds [153] measured at the 
distance from the wall 9.4=+z  (a), 7.11=+z (b), 106=+z  (c), and 

770=+z  
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Table 6.1 Input data for Figure 6.8  
 

Figure 6.8 a 6.8 b 6.8 c 6.8 d 
+z  4.9 11.7 106 770 
+
*λ  6.76 5.45 4.61 4.61 

Kc  1.01 1.82 2.27 1.36 

 
The local rate of dissipation of the mean flow kinetic energy in the logarith-

mic layer is given by 

22

2
*

2

22 z
u

z
u

κ
νν

ε −=







∂
∂

−=&  

The optimal parameter *
tR  brings a maximum for the second turbulent veloc-

ity scale and a minimum for the Karman constant. In turn the minimum of the 
Karman constant is related to the maximum of the local rate of dissipation of the 
mean flow kinetic energy.  

Using the dynamic roughness parameter we can propose the scaling for the 
local rate of dissipation of the mean flow kinetic energy in the logarithmic layer 
as follows 

τλε /)/(2 2
0

*
0 zw−=& , 

Here 2
*/uντ =  is the scale of time in the inner layer.  

Apparently it means that the Karman constant should be determined as 
41.02/1 * ≈= tRκ . Therefore two another constants of the theory are given by  

71.82 )(*
0

*
0 ==+ tRI

t eRλ , 14.02/)(
0

*
0 == −+ tRIew . This is the final closure. Hence this the-

ory of turbulence is the completely closed theory, because all parameters have 
been calculated within the theory from the "first principles". 
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