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3 Model of turbulent flows over rough surface   
3.1 Empirical models of turbulent flow over rough surfaces

The study of the rough wall turbulence is important in fluid mechanics, in the atmosphere and ocean and in engineering flows [1-74]. The roughness effect on the turbulent boundary layer have been considered and summarised by Nikuradse [75] Schlichting [61,76], Bettermann [77], Millionschikov [78], Dvorak [79], Dirling [80], Simpson [81],  Dalle Donne & Meyer [82] and other. 

Nikuradse [75] established (for sand-roughened pipes) that if the  roughness height significantly exceeds the viscous sublayer thickness, then the mean velocity profile can be described by the logarithmic function:
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where 
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 is the friction velocity, 
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 is the fluid density, z is the distance from the wall - see Figure 3.1, 
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 is the characteristic scale of the sand roughness, 
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 are empirical values. Nikuradse found that 
[image: image8.wmf]k

=

=

0

4

8

5

.

,

.

c

s

 for the completely rough regime. He compared the mean velocity profile (3.1) with the law of the wall, derived him before in 1932 for turbulent flows in smooth pipes, as follows 
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 is the kinematic viscosity, 
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 are the logarithmic profile constants for the hydraulically smooth surface. 
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 is the shift of the mean velocity logarithmic profile which can be defined for the turbulent boundary layer over a rough surface as
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 for the completely rough regime. Nikuradse has shown that the dimensionless roughness height parameter 
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 can be used as an indicator of the rough wall turbulence regime. He proposed to consider three typical cases:

· the hydraulically smooth wall for   
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· the transitionally rough regime for 
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· the completely rough regime for 
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Thus, the sand-roughened wall turbulence depends on the dimensionless roughness height (roughness Reynolds number) 
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 as have been established by Nikuradse.

Schlichting [76], used the Nikuradze's date base and his own experimental results obtained in the water tunnel of rectangular cross section with the upper rough wall,  proposed the new form of the equation (3.1) which is well counted the roughness effect on the turbulent boundary layer by means of the effective wall location (
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) and the equivalent sand roughness parameter 
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. With these parameters the mean velocity profile in the turbulent flow over an arbitrary rough surface can be written in the Nikuradze's form (3.1) as follows:
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where 
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 (see Figure 3.1). The effective wall location was defined by Schlichting as the mean height of the roughness elements (the location of a "smooth wall that replaces the rough wall in such a manner as to keep the fluid volume the same"). The value 
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 has been measured  by Schlichting for the several types of the roughness elements with various shapes, sizes and spacing. 
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Figure 3.1: The scheme of the turbulent flow over a rough surface (left) and the roughness element geometry (right): spheres, spherical segments, conical elements (3D) and transverse rectangular roods (2D)  

The Schlichting's experiment was re-evaluated by Coleman et. al. [83] and they noticed that some Schlichting's data have been obtained in the transitional rough regime.

Clauser [84] has shown that the shift of the mean velocity profile can be written as 
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where 
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 is the characteristic scale of roughness elements and 
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 must be some function of the roughness geometrical parameters. Hence the equivalent sand roughness parameter 
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 for sand roughness.

Bettermann [77] discovered that 
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 is the function of the roughness elements spacing. He introduced the roughness density parameter for roughness composed of the transverse square bars as the pith-to-height ratio, 
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 - see Figure 3.1. Bettermann found that in the range  
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 with the roughness density can be specified by
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As has been demonstrated by Dvorak [79], the rough wall effect well correlated with the roughness density parameter defined as pitch-to-width ratio or the ratio of total surface area to roughness area, 
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. Dvorak developed the Bettermann's model in the range 
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, used the data of Schlichting and other researches, as follows:
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Simpson [81] introduced the roughness density parameter in the case of three-dimensional (3D) roughness as 
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 is the number of significant roughness elements per unit area, 
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 is the average frontal area of the significant roughness elements. He suggested the general interpretation of the Bettermann-Dvorak correlation (3.5): two branches (3.5) exist depending on the formation or absence of transverse vortices between roughness elements. Simpson also showed that the shape of the element is an important parameter. 

The model been reported by Dirling [80] and verified by Grabow & White [85], takes into consideration the roughness elements shape parameters. The Dirling's density parameter is defined as 
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 is "the windward wetted surface area". In a case of two-dimensional (2D) roughness the Dirling's parameter leads to the Bettermann's roughness density parameter.  As it was shown by Sigal & Danberg [86] the shape parameters effect can be described by the similar correlation such the equation (3.5) and that 
[image: image48.wmf]D

=

2

2

.

 for the two-dimensional roughness in the range 
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.  They also underlined that the correlation for 2D roughness elements is not the same as for 3D elements. On the other hand, Kind & Lawrysyn [87] confirmed that the Bettermann-Dvorak function 
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 in the form (3.5) can be successfully used for the correlation of experimental data in the aerodynamic experiments with the natural hoar-frost roughness. 

Dalle Donne & Meyer [82] correlated their data and those of previously researches (data bases [88-105] considered below) used the roughness density parameter 
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. They developed the empirical model which can be applied to the turbulent flows in the annuli and  tubes with inner surface roughened by rectangular ribs. 

The roughness density parameter entered by Dalle Donne & Meyer [82] in case  of 2D roughness elements can be transformed as follows
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With this parameter the experimental data of Dalle Donne & Meyer [82] and other sources [88-105] summarized in Table 3.1 can be described by equations:


[image: image53.wmf]î

í

ì

£

L

£

L

£

L

£

L

=

-

L

+

+

=

L

-

160

3

.

6

,

)

(

04

.

1

3

.

6

1

,

)

(

3

.

9

,

lg

)

/

7

2

(

)

(

*

46

.

0

*

*

73

.

0

*

*

0

*

D

D

D

D

r

D

D

R

R

d

k

c

D

                            (3.6)

This correlation has been derived by Dalle Donne & Meyer [82] for the range of the experimental data parameters 
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Table 3.1. Geometrical characteristic of 2D roughness investigated by various authors

	Authors
	Year
	Geometry
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	Symbol

	Möbius
	1940
	Tube
	10.0-29.22
	0.3-2.20
	3

	Chu & Streeter
	1949
	Tube
	1.95-7.57
	0.93
	4

	Sams
	1952
	Tube
	2.0-2.3
	0.88-1.37
	9

	Nunner
	1956
	Tube
	16.36
	0.8
	16

	Koch
	1958
	Tube
	9.8-980
	1.0-5.0
	5

	Fedynskii
	1959
	Annulus
	6.67-16.7
	1.0
	10

	Draycott & Lawther
	1961
	Annulus
	2.0
	1.0
	2

	Skupinski
	1961
	Annulus

Tube
	2.0-41.0

22.2-133.4
	1.0

2.0
	6

	Savage & Myers
	1963
	Tube
	3.66-43.72
	1.33-2.67
	13

	Perry & Joubert
	1963
	Wind tunnel
	4.0
	1.0
	19

	Sheriff, Gumley & France
	1963
	Annulus
	2.0-10.0
	1.0
	14

	Gargaud & Paumard
	1964
	Tube

Annulus
	1.8-16.0

10.0-16.0
	1.0-1.67

1.0
	1



	Bettermann
	1966
	Wind tunnel
	2.65-4.18
	1.0
	20

	Massey
	1966
	Annulus
	7.53-30.15
	1.06
	15

	Kjellström & Larson
	1967
	Annulus
	2.02-38.52
	0.086-4.08
	12

	Fuerstein & Rampf
	1969
	Annulus
	2.91-25.04
	0.42-2.50
	8

	Lawn & Hamlin
	1969
	Annulus
	7.61
	1.0
	17

	Watson
	1970
	Annulus
	6.49-7.22
	1.0
	11

	Stephens
	1970
	Annulus
	7.20
	1.0
	18

	Webb, Eckert & Goldstein
	1971
	Tube
	9.70-77.63
	0.97-3.88
	7

	Antonia & Luxton
	1971
	Wind tunnel
	4.0
	1.0
	21

	Antonia & Wood
	1975
	Wind tunnel
	2.0
	1.0
	22

	Dalle Donne & Meyer
	1977
	Annulus
	4.08-61.5
	0.25-2.0
	24

	Pineau, Nguyen, Dickinson & Belanger
	1987
	Wind tunnel
	4.0
	1.0
	23
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Figure 3.2: The rough surface effect on the turbulent flow: 2D roughness elements data [88-105], the solid line is calculated on the model of Dalle Donne & Meyer [82]

Figure 3.2 demonstrates 
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 calculated according to  (3.6) - solid line (1) and the experimental data found for 2D roughness elements by various authors listed in Table 3.1 (the corrected and reduced data or 
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 from Table 2 of Dalle Donne & Meyer [82] has been used as long as correlation (3.6) was proposed for this values).The symbols description is given in the right part of Figure 3.2 and Table 3.1. As Figure 3.2 shows the correlation is good for the middle and high value of the roughness density parameter, but for  
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  the scatter of the points is rather large and can't be explained by the experimental technique differences only. The empirical model [82] can't explain the experimental behaviour of the mean velocity shift with a roughness density, which can be found out only by comparison of large number of the data, obtained by various authors [75-77, 81-83, 87-109].

Osaka & Mochizuki [110] examined d-type rough wall boundary layer in a transitionally and a fully rough regime. They have shown that in a transitionally rough regime the mean velocity logarithmic profile is confirmed and that the Karman constant has the same value as for the hydraulically smooth wall flow. 

The mean velocity logarithmic profile widely used in the atmospheric turbulence research is given by (see [18-20, 25, 111-113]):
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where 
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 is the displacement height, 
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 is the roughness length. Note that 
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 are considered often as some adjustment parameters chosen for the best correlation of the local wind profile in the neutral stratified flow with the logarithmic profile.  The model of the displacement height has been considered by Jackson [112]. The classification of the experimentally determined roughness length for various terrain types was given by Wieringa [113].
 3.2 Model of wall roughness effect on turbulent flow

The effective wall location was defined by Schlichting [76] as the mean height of the roughness elements and in the mathematical form can be written as:
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where 
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is the relief of the rough surface - see Figure 3.1, 
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 are the rough wall scales in the 
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In a case of two dimensional roughness considered by Dvorak [79] and Simpson [81] the roughness density parameter depends on the width and pitch of roughness elements (see Figure 3.1): 
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 is the numerical constant which equals to unity in this case. Using the Bettermann-Dvorak's equation (3.5) in the rang 
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 the shit of the mean velocity can be presented as a function of the mean roughness height, thus we have 
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In this approach the mean velocity profile in the turbulent flow over a rough surface can be rewritten as follows
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If we redefined the main roughness scale then the mean velocity profile takes the form  which widely used in the atmosphere research:
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where 
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. Hence, the logarithmic profile mainly depends on the mean height of the roughness elements in this range of the roughness density. 

Let us consider the random function defined as   
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where 
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 is the random parameter with the mean value given by
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 is the density of a probability distribution function (roughness statistic function) normalised on unity:
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Both parts of equation (3.9) can be averaged with this function as follows  
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where  
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. With this result the mean-squared-value of the velocity fluctuations can be calculated as
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Therefore we have
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Thus, the random function 
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can be used for the mean velocity calculation as well as for the mean-squared-value of the velocity fluctuations modelling. Our main idea is that the random function 
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 can be calculated on the basis of a solution of the Navier-Stokes equation due to the surface layer transformation 
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where 
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Note, that the surface layer transformation is only a kind of averaging procedure which conserves the function properties across a boundary layer. The Navier-Stokes equation can be averaged with the surface layer transformation (3.10) instead the normal Reynolds averaging method to derive then the equation for the random amplitude 
[image: image103.wmf]~

(

/

)

u

z

r

1

. Unfortunately it's impossible to use this method in the simple form (3.10), because, for example, in the case of a smooth flat plate 

. 

Therefore we suppose that there is a surface 

 (the dynamic roughness surface) inside the flow domain which can be used for modelling the rough surface effect on the turbulent flow. Without any limits we can choose a surface 
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where 

 is the multiple density of a probability distribution function. Therefore in common case the surface layer transformation can be written as follows (instead of eq. (2.1) or (3.10))
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Here again we have the starting point of the theory of turbulence explained in second chapter. On this way we have lost the simplicity of transformation (3.10), as there is an unknown dynamic roughness function 
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The additive dynamic roughness surface model considered above is given by




where 

is the height of the viscous sublayer over the rough surface. Averaged this equation over a large area 

 we have: 

, where 

 is the mean roughness height, i.e.




 After replacing of the origin of the coordinate system in the new position 

  the dynamic roughness equation can be written as:

 

                                 (3.11)

where  

. Thus, we can imagine the smooth wall located at  

 as it was defined by Schlichting [76] and the dynamic roughness surface with the dynamic roughness parameters given by (3.11). For this problem we should suggest that    
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 can be considered as a function of the Dvorak's roughness parameter: 
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In the case of the surface roughened by spherical segments (Figure 3.1) we have: 
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where, 
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In the case of the surface with conical uniform elements we have
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In the case of two dimensional roughness as it has been considered by Bettermann [77],  Dvorak [79] and Dalle Donne & Meyer [82] 
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 depends only on the roughness elements width and pitch (see Figure 3.1):
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The mean liquid surface between the roughness elements at 

 equal to 
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 is the important parameter for the rough surface effects modelling because the boundary condition for the mean velocity gradient should be given at 

.    

The mean velocity logarithmic profile in the turbulent flow over the rough surface can be derived from (2.27) written in the new coordinate system:
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where 
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The boundary condition for the equation (3.13) on the effective smooth wall is given by
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where  
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 is the effective shear stress applied to the effective smooth wall at 

.  Thus for the dimensionless mean velocity gradient on the effective wall in common case one can propose that


[image: image145.wmf]w

a

a

G

dz

du

t

mt

m

m

/

/

=

=

+

+

        at        

           (3.14,b)

As it follows from the mean velocity logarithmic profile in the turbulent flow established by Schlichting (see eq. (3.4)) the dimensionless turbulent length in the first equation (3.13) depends on the roughness parameters and thus can't be defined from an equation similar to eq. (2.24). To define 
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But this equation also follows from (38) if we put 
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This equation can be rewritten in the standard form as follows:


[image: image156.wmf]u

z

c

k

D

r

s

+

+

+

=

+

-

-

1

1

1

0

k

k

ln

ln

(

)

L

 ,                          (3.16)


[image: image157.wmf]D

c

k

G

s

r

a

(

)

ln

L

=

+

+

0

1

1

2

k

k


where 
[image: image158.wmf]c

0

5

015

=

.

. Note, that the finale result (3.16) mainly depends on the mean velocity gradient applied to the effective surface at 
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 There are two available cases which can be realised in the experimental situation: the roughness elements installed on the absolutely smooth surface and the roughness elements installed on the rough surface. In the first case we suppose that the mean velocity gradient applied to the effective smooth wall is proportional to the velocity gradient over a smooth surface given by the first equation (2.27) for  

. Used the boundary condition (3.14, b) we have:  
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where the shape parameter
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 introduced to estimate the frontal and leeward re-circulation zones effect, 
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here 
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 as it follows from the second equation (3.18). The main turbulent length scale can be estimated from (3.18) as 
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The rough surface effects model (3.19) depends on two parameters 
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In the second case the mean velocity gradient model is the same as (3.19) but we should put 
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3.3 Modelling of roughness density effect.  3D roughness elements

To test the roughness surface effect model (3.19) the turbulent flow data for 3D roughness elements obtained by Schlichting [76] and re-evaluated by Coleman et. al. [83] has been used. The main result reported by Coleman et. al. [83] is that some Schlichting's data was obtained probably in the transitionally rough regime. The experimental techniques in Schlichting's [76] and Coleman et. al. [83] experiments have been analyzed and it was surmised that Schlichting's data was measured in the fully rough regime but some details of his experimental technique have not been reported. 

The computed (1) and experimental data by Schlichting (3) and Coleman et. al. (5) are shown in Figure 3.3 for spheres (Fig. 3.3,a), spherical segments (Fig. 3.3,b) and cones (Fig. 3.3,c). The points (4) are computed from the experimental data by Coleman et. al. [83] which has been corrected with transitional layer parameter 
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As it shown in Figure 3.3  the transitional layer effect is essential for the plate with roughness in a form of spherical segments (two points with  
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Note, that the experimental data re-evaluated by Coleman et. al. [83] is getting closer to the original Schlichting's data after the correction on the transitional layer effect.  Therefore it seems to be clear that the data by Coleman et. al. [83] is rather based on another experimental technique then the original Schlichting's data [76]. 
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Figure 3.3: Roughness density effect on the turbulent boundary layer for 3D roughness elements: a) spheres; b) spherical segments; c) cones; d) generalised correlation  

The corrected data has been used to estimate the parameters 
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The roughness parameters  
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  for the data obtained by Coleman et. al. [83] (solid line (1) in Figure 3.3,a) and 
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  - see Figure 3.3,c. For comparison the Bettermann-Dvorak's correlated line (2) also is shown in Figure 3.3. 

The magnitude 
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 can be explained in terms of the rough surface drag which has the same value for the spheres and conical elements and mach less for the surface with spherical segments. The mean fluid density parameter is 
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The experimental data for the surfaces with spheres, spherical segments or conical elements can be collected together used an "universal" parameter which is different from that proposed by Bettermann [77] Dvorak [79], Dirling [80], Simpson [81], Kind & Lawrysyn [87] and other. This correlation is available for the high roughness density parameter at 
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and therefore the "universal" parameter is given by 
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 is shown in Figure 3.3, d with the corrected experimental data for the rough surfaces with  spheres (2), spherical segments (3) and  conical elements (4) .  The classic sandgrain-roughened pipe flow experiment of Nikuradse (1933) with  
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 is presented by point (5). The hoar-frost roughness data of Kind & Lawrysyn  [87] are plotted by points (6). Note, that data of Kind & Lawrysyn  [87] has been corrected with transitional layer parameter
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[image: image216.wmf]f

r

 depends on the frost formation and has been calculated for the plate 1-6 of Kind & Lawrysyn  [87] as follows 
[image: image217.wmf]f

r

=

.

;

.

;

.

;

.

;

.

;

013

04

0

12

0

12

04

04

. In this case we have 
[image: image218.wmf]b

0

0

7

=

.

 as for as for conical elements. The experimental data for 3D rounded elements of Simpson (1973) is shown by symbols (7), and for his data 
[image: image219.wmf]0

45

0

55

0

.

/

.

£

£

b

a

. 

Thus one can suggest that the rough surface with spheres is the basic case for 3D roughness elements because all data shown in Figure 3.3,d is correlated well with the basic line (1). 

Then one can propose the model for
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  the "universal" parameter is related to that of Bettermann (1966)  since in the case of transverse square bars 
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3.4. Modelling of roughness density effect.  2D roughness elements

Using the roughness density parameter model in the form (3.12, d) and suggesting that 
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For the constant value of the parameters 
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where 
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In this model the experimental data for various 
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as well as in the Dalle Donne & Meyer's model (3.6). But as it has been established the shape parameter derived from the model (3.6) isn't a good approximation.  
Note that in the common case one can suggest that 
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Figure 3.4: The rough surface effect on the turbulent flow: 2D roughness elements data 1-24, the solid line is calculated on (3.22-3.23). The multiply fragment of correlation line is shown in the lower part

Figure 3.4 shows 
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calculated on (3.22-3.23) - the solid line (1), and the experimental data 1-24 of various authors listed in Table 3.1 (note, we have used values 
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 from Table 2 of Dalle Donne & Meyer [82] instead of the original data 1-18). The symbols description is given in the right part of Figure 3.4 and in Table 3.1. A fragment of the correlated line is shown in the lower part of Figure 3.4. One can see that the predicted roughness density effect (solid line) is in a good agreement with the main experimental data.

Finally note, that model (3.22-3.23) is derived for the rough surface composed by the transverse rectangular rods and can't be applied to 2D roughness elements of another form without additionally verification.

3.5 Model of total length of frontal and leeward re-circulation zones

Analyzing expression (3.22) one can find two singular points: 
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accordingly.    As we can see from the data shown in Figures 3.2 there is probably another singular point at 
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As we can see from Figure 3.5,a the total length has a maximum located in a point 
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. According to this the effective mean fluid density has a minimum which may be less then zero. As it follows from (3.14, b),  if  
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. Physically it means that the frontal and leeward re-circulation zones have intersection. As it is well known in this case the skimming flow is realised. In the model (3.22)-(3.23) this regime is counted statistically and probably with some error. In any case the data over the point 
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An unexpected result has been found out in the numerical experiment that function 
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A restriction for this model can be established if the length scale 
[image: image281.wmf]g

b

f

l

0

/

)

/

1

(

a

a

r

L

-

=

+

+

 found out for the rough surface is compared with the main turbulent length scale 
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 for 2D roughness considered above. If this restriction is broken then it means that the model (3.22)-(3.23) also can't be used properly. Supposed that in this case 
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3.6 About efficiency of air pollutants removal  

The efficiency of the air pollutants removal from the urban streets depends on several parameters including the emission rate, wind speed and aerodynamic properties of the streets. For the one road system this problem is reduced to the estimation of aerodynamic properties of the street depending on the geometry of ambient buildings [16, 114]. In case of several parallel streets with uniform buildings, the problem mainly is similar to the task about turbulent flows over a rough surface with artificial 2D roughness elements which was considered above. 
So, put 
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Figure 3.5: а) the normalised total length of the frontal and leeward re-circulation zones (solid lines) versus the Dvorak's roughness density parameter 
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.; b)  the roughness density effect on the mean velocity shift 
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. The solid line 1 is calculated on (3.22)-(3.23),  The solid line 2 is calculated also on (3.22)-(3.23), with parameter 
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Assuming that all emitted gases are removed from the street by turbulent flow, one can define the turbulent scale of impurity concentration on the street "i" as: 
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. Hence, the impurity concentration near to the road is proportional to the emission rate and inversely proportional to the wind friction velocity. But the turbulent velocity scale in turn depends on a wind velocity on the external boundary of turbulent flow. Using the first equation (3.16) on the level 
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From here the wind friction velocity and turbulent scale of concentration can be defined as follows
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These expressions can be used for an evaluation of efficiency of air pollutants removal from streets depending on the geometric parameters. Setting of the wind velocity at height 
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 is  the numerical value and simplifying the second expression (3.24), we have:
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In activities [41-42] and some other, it is offered to measure the wind velocity in urban environment at the level 
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, but it isn't right, because the mean velocity profile is not homogeneous on this height. 

Thus, the problem about efficiency of air pollutants removal from the streets is reduced to that to minimise the expression (3.25). If the parameter of emission, wind velocity and the wind speed parameter 
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 are given, then a minimum of the dynamic concentration is reached at a maximum of 
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Figure 3.6:  a) The shift of the mean velocity logarithmic profile versus parameter of roughness density; b) the maximum of mean velocity logarithmic profile shift vs the roughness elements height to width ratio  
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Finally note that only the case of the neutral stratified turbulent flow has been considered. The problem about turbulent diffusion in the atmospheric boundary layer with an arbitrary stratification over the region with several streets will be analysed in the subsection 5.2 of Part 5.
Therefore, the model of turbulent boundary layer over rough surface has been given and it has been stated that the profile of a mean velocity in turbulent boundary layer can be described by logarithmic function with the parameters, depending on geometry of elements of roughness. Model application in the case of three-dimension elements of roughness of the type of spheres, spherical segments and cones, as well as in the case of two-dimension elements of roughness of the type rectangular roods, placed on the flat surface with equal step has been considered. The basic parameters of model have been evaluated. Equations, describing summary volume of re-circulating zones and elements resistance to roughness have been obtained. The question about possibility of application the obtained results for modelling the efficiency of city streets ventilation have been considered.

(To be continued)
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