Hayunsrtit sxypaan KyoI'AY, Ne58(04), 2010 roaa 1

VJIK 532.526.4

TEOPHUS 1 KOHCTAHTBI IPUCTEHHOM
TYPBYJIEHTHOCTH

Tpynes Anexcanap IlerpoBuu
K. ¢.-M. H., Ph.D., nupexrop
A&E Trounev IT Consulting, Toponmo, Kanaoa

B pabore mpencraBiieHa MOJTHOCTHIO 3aMKHYTast MO-
JIeTTb TYPOYICHTHOT'0 IOrPAaHUYHOT'O CJI0SI, MOTYYCH-
Has u3 ypaBHeHusi HaBbe-Crokca. @yHaaMeHTaIbHbIE
KOHCTaHTHI IIPUCTEHHOMN TYPOYJICHTHOCTH, BKITFOYAs
nocrosinHyio Kapmana, onpezieneHsl U3 Teopuu. J1a
MOJIeITb OBLTa Pa3BHTA JJI YCKOPEHHOIO U HEU30Tep-
MHYECKOT0 MOrpaHudHOro cios. [Ipodwmu cpenueit
CKOPOCTH Y TEMIIEPATYPHI, BEIUUCIEHHBIE HA OCHOBE
MOJIETTM HaXOJISATCS B COTJIACHU C IKCIIEPUMEHTAIIb-
HBIMH JAHHBIMH

Kmouessie cnosa; TYPBYJIEHTHBIN 5
TIOrPAHUYHBIN CJIOH, IO APUGMUYECKUI
ITPO®UJIb

1. Introduction

UDC 532.526.4

THEORY AND CONSTANTSOF WALL
TURBULENCE

Alexander Trunev
Ph.D., Director
A&E Trounev IT Consulting, Toronto, Canada

The completely closed model of wall turbulence was
derived directly from the Navier-Stokes equation. The
fundamental constants of wall turbulence including the
Karman constant have been cal culated within a theory.
This model has been developed also for the accel erated
and non-isothermal turbulent boundary layer flows.
The estimated mean vel ocity, temperature and impuri-
ty concentration profiles as well as the spectral charac-
terigtics of the streamwise vel ocity component areto
be shown in a good agreement with the experimental
data
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Nikuradse [1] found that the turbulent boundary layer structure includes the re-
gion where the mean velocity increases with the distance from the wall as a
logarithmic function

:kiln£+c0 (1)

where u, is the friction velocity, u =t /r , t isthe wall shear stress, r isthe

fluid density, z is the distance from the wall, n is the kinematic viscosity. Niku-
radse [1] established that k =04, c, =55 for turbulent flows in smooth pipes.

The logarithmic law (1) has been confirmed by many and many researchers of
turbulence [2-7, 13-14,17]. Recently it was shown [5] that the log law can be
excellent agreed with the experimental pip flow data for
600 < zu, /n <0.07Ry, /n, where R is the pip radius. For this range the log law

constants were shown to be k =0.436, ¢, = 6.15. Also the log law was confirmed

for a zero pressure gradient turbulent boundary layer flow in the precise wind-
tunnel experiment [6] and the constants were obtained k =0.38, ¢, =4.1. To es-

timate the Karman constant the normalised local slope of the mean velocity pro-
file has been used as follows X =dInz* /du* where z* =z, /n isthe inner layer

variable - see Figure la.
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So this universal law can be considered as a fundamental fact of the theory of
turbulence. Nevertheless it may be wonder that this law never been derived from
"first principles' excepting the similarity theory (see the typical arguments in
ref. [2-8] and other).

To derive this law we can begin with simple assumption that the logarithmic
profile of velocity is a fragment in solution of hydrodynamics equations of vis-
cous fluid in a form of Navier-Stokes. Thus the way a question is put can be dif-
ferent: how the initial equations should be transformed so that in their solution
boundary layer should contain logarithmic profile? This type of transformation
was developed recently [9-11]. The idea of transformation is rather simple and
as a matter, was driven at bringing into initial system equations of some set of
random parameters, describing fluctuations of conventional boundary of viscous
sublayer.

To understand this idea we should note that the logarithmic distribution (1) is a
typical mean velocity profile measured in the turbulent flow bounded by a
smooth wall. In a case of the turbulent flow over a rough wall Nikuradse [12]
established (for sand-roughened pipes) that if the roughness height significantly
exceeds the viscous sublayer thickness, then the mean velocity profile can be
described by the logarithmic function as follows:

1
%:k—lnki+cS (2

S

where k. is the characteristic scale of the sand roughness, k,c, are empirical
values (Nikuradse found that k = 04,c, =85 for the completely rough regime).

The sentence "the roughness height significantly exceeds the viscous sublayer
thickness' means only that k., >>n/u, or in another form k. =k.u, /n >>1. Obvi-
ously that k! is the roughness Reynolds number and n/u, is the characteristic

thickness of viscous sublayer. Compared equations (1) and (2) one can conclude
that there is an universal model described the turbulent boundary layer flows
over smooth and rough surfaces. As it was shown [9-11] this model can be de-
rived directly from the Navier-Stokes equation and that the logarithmic distribu-
tion is an asymptotic solution of this model.

2 Principles of theory

Let r =r(x,y)is a function describing the roughness geometry and h =h(x y,t) is
the thickness of viscous sublayer. The dynamic roughness surface can be de-
fined as follows h(x,y,t) =r(x,y) +h(x,y,t). Thus the mean dynamic roughness
height is given by h =k +I;n/u , where | is the dimensionless thickness of
viscous sublayer. It should be noted that in the case of a smooth plate for
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r(x,y) =0 the dynamic roughness surface equals to the viscous sublyer conven-
tional surfacei.e. h(x,y,t) = h(x, y,t).
In Figure 1b the frequency diagram [13] of instantaneous thickness of a viscous

sublayer in the turbulent boundary layer over a smooth surface is shown. The
maximum of frequency diagram is established for z* =z, »9. The first maxi-

mum of the inverse normalised local slope of the mean velocity profile
A=dU"*/dInz* aso locates approximately at z* » 9- see Figure la. Thus one
canput | »9.

For the flow over a smooth surface we have h =1 )n/u, and in this case the loga-
rithmic velocity distribution in the form (1) is realised. When k. >>1 n/u and
therefore h » k, then the mean velocity profile can be described by eqg. (2). This
two cases can be described automatically if the flow velocity vector, u = (u,v,w),
can be written as follows

u=u(xy,z/h(xy.t),t) (3)

A a) )
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Figure 1: @) The inverse normalised local slope of the mean velocity profile
A=dU"/dInz" estimated from the van Driest model [14]- the solid line
6 and from the experimental data by Osterlund [6] (1-4). Horizontal solid
line (5) corresponds to the estimated quantity A=2.54; b) the frequency
diagram of instantaneous thickness of viscous sublayer in the turbulent
boundary layer over a smooth wall [13].

If the streamwise velocity has a logarithmic asymptotic, up In(z/h), then also
the mean velocity has the logarithmic asymptotic, U =(u) p In(z/h).

Unfortunately this very simple idea can’'t be used directly by substituting ex-
pression (3) in the Navier-Stokes equation, because the dynamic roughness sur-
face can’'t be described by a regular function in a common case.
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Therefore the dynamic roughness surface is advised to characterise by the set of
the random continuous parameters h, h, h,, h, , with a well-known function of

distribution f, = f.(h,h,h,,h). The reason why only the first odder derivatives of
the function h=nh(x,y,t) play rolein thistheory is explained by the volume aver-
aging used for afiltration of random functions.

We suppose that h =z/h=const and let us consider a representative region of
flow by avolume dv =L,Ldz, where L, L, aretypical scalesof flow inthex,

y directions accordingly. Then let us consider subregion dv, lying in the repre-
sentative region of the flow, dv , in which the random parameters h, h, h,h, are

changed in the intervals (hh+dh) , (h;h+dh), (h; h+dh) , (h;h +dh) ac-
cordingly. The volume of this subregion is given by

dv; = avf (h,h,h, ,h)dhdh dhdh .
The random function describing the flow velocity can be determined by the tot-

Ing expression u =u(x,y,z/h(x,y.t),t) inthe volume dv,:

G(h,t,h,h,h h) = lim 1 SH(x, y,h, tdxdydz
dVdV

dvV® dVs

where dV isan arbitrary volume enclosed in dv = L, L dz and containing dv, as a
whole.

Obviously, t(h,t,h,h,,h, h) is the random function, because it depends on the

random parameters. The equations describing dynamics of random functions
U =1(h,t,hh,h h)immediately follow from the hydrodynamic equations of

viscous fluid [9-11]. Statistical moment of an order m of the random function
t(h,t,h,h,h h) are determined as follows

U"(zt) = @1"(.t,h.h, by h) f(hh, by, h)dhdh,dh,dh .

This algorithm is a very effective in the wall turbulence problem because in this
case the random functions d(h,t,h,h,,h k) with fixed variables h,h,,h, h have

the properties which are similar to the mean flow parameters. Otherwise for the
solutions presented for instance by the logarithmic function we can suppose that

0 =cduh,t,hh,h,h)f(hh,h h)dhdhdhdh = U(z/h,h;,h;,hf),
where the parameters with stars can be estimated from the comparison of solu-
tions with experimental data or calculated from a theory considered below.

A zero pressure gradient turbulent boundary layer over a smooth surface can be
described by the completely closed equation system derived directly from the

http://ej.kubagro.ru/2010/04/pdf/24.pdf



http://ej.kubagro.ru/2010/04/pdf/24.pdf

Hayunsrii sxypaan Kyol'AY, Ne58(04), 2010 roaa 5

Navier-Stokes equation (see [10-11] for details). Utilised the inner layer vari-
ables this model can be written in the form

du’ __ &Ros’a  sin’a 0 )
dz” Cl+x®  14x2
d’c . d ,.dic _ __cdx
e T e 70 TR0

where u*=0/u, x=2"/1", 1" =hy /nJhZ+h? is the characteristic dimen-
sionless scale of the viscous sublyer, a =arctanth,/h), Vv*=V/u,
w* =W/u, ,c =[(u"cosa +Vv*sina +w, )X - w']/wW, w, :ht/u*\/m IS the sec-
ond scale of velocity in the wall turbulence, R =hh /n(hi +h}) is the Reynolds

number calculated on the dynamical roughness parameters (it should be noticed
that the random parameters R ,w; ,a,l “are not functions of time or space vari-

ables!).
The boundary conditions for Eq. (4) are set as follows

u*(0)=0, c(0=0, c®0)=1 c®%0)=a (5)
where a is afree (shooting) parameter.

It should be noted that model (4) is related to the Blasius equation in the particu-
lar casewhen R =1/2,a =0 and x <<1.

3 Constants of wall turbulence

Let us suppose that for z* ® ¥ the streamwise mean velocity profile has a loga-
rithmic asymptotic, i.e.

du”/dz" ® 1/k z*.

Surmising that lim ., 1(x,R)=1,(R) we have from the first equation (4):

du*/dz" =1*e'/z", and therefore 1*=¢"/k. The last equation gives the con-
tinuous spectrum of the turbulent scales 1*=1*(R). Used the dynamic rough-

ness Reynolds number in the form R =w;l; the equation | * =¢"/k can be re-
written as follows

Wy 7k =R exp[- 1,(R)]

For an uniqueness of the mean velocity profile we can suppose that for k = const
the second turbulent velocity scale has a stable value at small variations of the
parameter R, i.e. dw}/dR =0. It gives R =R »1.2193. The turbulent boundary

layer fundamental scale can be defined as | ; =€ /k . This quantity approxi-
mately equals to the experimental value 1} »9.16 for k =0.39.
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The function 1/1* =ke'> can be considered as a spectral density. The inverse
length scale versus the Reynolds number is shown in Figure 2a. This type of a
spectral density is similar to the spectral density of the streamwise velocity fluc-
tuations in the turbulent boundary layers. The function w; =w;(R) is shown in
Figure 2b. This type of spectrum is similar to the spectral density of the trans-
versal velocity pulsation [15]. Both functions represent the constructive model
of the hydrodynamic chaos in this theory of turbulence.
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Figure 2: @) The inverse length scale 1/1* versus the Reynolds number of dy-
namic roughness in double logarithmic scale. This type of a spectral
density is similar to the spectral density of the streamwise velocity fluc-
tuations in the turbulent boundary layers; b) the normalised turbulent ve-
locity scale w;/k versus the Reynolds number of dynamic roughness.

This type of spectrum is similar to the spectral density of the normal to
the wall velocity pulsation.

Our suggestion about the dynamical roughness structure in the wall region is
that the parameter a fluctuates around the mean value a =p /2. This structure
looks like furrows elongated along of the mean flow stream lines in the viscous
sublayer (see, for instance, [16] where the visualisation of the coherent structure
in the turbulent boundary layer is presented). In this case the first Eqg. (4) can be
integrated once and the standard logarithmic profile can be derived for
zm>>1

1% -1 1,13

= dx - —In .
KOz " Tk 2

1
+ +
u —Elnz +Cyy G
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Therefore, with the given constant k another constant of the mean velocity loga-
rithmic profile can be calculated from the last equation.

4 Spectral characteristics of wall turbulence
The spectral density of the streamwise velocity pulsation can be defined as fol-
lows

T

OF ()dk =@ (w)dw = lim % O (@t = (u?)

where w is the characteristic radian frequency, k =w/U is the flow wave num-
ber (Taylor's frozen turbulence hypothesis). To compare the spectral density
with experimental data let us suppose that h u wh, Therefore the Reynolds num-

ber calculated on the dynamical roughness parameters depends on the fre-
guency,

R =wh?/nn? =wl ’n/u? =kHl :’u* /Re,

where n* =h? +hj,1! is the typical turbulent length scale of the streamwise ve-
locity pulsation, H is the boundary layer height, Re, = Hu, /n. Due to this rela-
tionship the spectral characteristic of the turbulent flow is related to the eigen
spectrum of the value problem (4-5). In general case it can be like the power se-
ries

X .

Fky=ac(")".

i=1
Practically we can test one first term of this series. Then the spectral density can
be proposed in the form

_ Hu® _ 2 - 1[R (K]
F(k) =c, T =kc, Hu’e (6)
Fik), et s
104 o]
103 T . ¥ @
10 \
10! \
10’} \\
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Figure 3:The estimated spectral density of the streamwise velocity pulsation in
the turbulent channel flow (solid lines) for z* =4.9 (a), and z* =11.7(b),
and the experimental data[17]

where c, is the normalising factor. Suggesting that the flow wave number de-
pends on the dynamical roughness Reynolds number asthe linear function, i.e.
kp R, wehave ¢, =2.13| Izu*<u'2>/ut2 Re. .

The spectral density given by Eq. 6 is shown in Figure 3 (solid lines) together
with the experimental data [17] obtained in the turbulent channel flow. As it was
established both spectral density parameters slowly depend on the distance from

the wall. The best correlation was found in the viscose sublayer for z*=4.9
|7 =6.76 c, =1.01(Figure 3a) and for z* =11.7,1 ; =5.45,c, =1.82 (Figure 3b).

5 Thermal turbulent boundary layer

The model of turbulent flow (4) was developed to estimate the turbulent trans-
port of heat and impurities in the boundary layer. The mean temperature gradi-
ent can be written as follows (see [10-11] for details)

dT* _ Prexp|- 05Pc &) In(1+x?)]
dz’ J1+x
where T* =(T, - T)/T., T, is the surface temperature, T is the turbulent flow
temperature, T. =q, /(r c,u ) istheturbulent scale of temperature, q, isthe heat
flux from the rigid surface to the flow, c, is the specific heat at constant pres-

sure of the gas, x,=z"/1,", 1" =k, Pr)* isthe main turbulent scale of the ther-
mal layer, P =w;l; Pr isthe Peclet number.

(7)

The boundary conditions for equation (12) on a smooth wall and for the long
distance from the wall are given by

z'=0. T"=0,dT"/dz" =Pr (8)
Z7®¥: dI'/dz'® 1/k 7",

where k,, is a constant which approximately equals to the Karman constant.
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Figure 4. Mean temperature profiles in the turbulent boundary layer computed
for the small (left) and for the large Prandtl numbers (right). The square
symbols -the model of Sebeci [18]; the solid lines - the model (7-9).

In special case when Pr® 0 a general solution of the boundary value problem
(7)-(8) can be written as follows:
T* :kiArsh(thrz*) 9)
h
The mean temperature profiles computed on equations (7), (9) are shown in Fig-

ure 4 (right) by solid lines together with the profiles computed on the model of

Sebeci [18] - the square symbols. For the best correlation the function P, (Pr)was

numerically approximated as followsP, =-161/(1+01InPr) in the range of the
Prandtl number 2<Pr<10°. The agreement between two models in general is

good.

It should be noted that equation (7) is a typical two-scale model describing the
interaction between the transition layer with | » 1, and thermal boundary layer

with the main scale |, =(k, Pr)"*. Considering the mean flow as a "substance"

with the Prandtl number Pr=1 we can utilized equation (7) also to describe the
mean velocity profile.

6 Multi-scale model

Analysing data shown in Figure 1a one can found the several layers of different
scale:
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Theviscous syblayer z* £1/k, A» z*;

The transition layer which corresponds to the first maximum of A for
Z'»l g,
The logarithmic layer where A»1/k ;

The mixing layer or the "wake region" [19] which corresponds to the second
maximum of A for z» H/2;

The free stream region where A® 0 for z3 H.

With this scales the model of turbulence (4) has been developed for the case of
turbulent boundary layer flow in pressure gradient as follows

du* _e,exp(ly- 1) lgp'e' ’ eldx & L, 8P )1+ z where

dz* Kkl [1+x? k\/1+x29\/1+x2 KV, Re. -/1+22 KkV.Re.(1+2%)

e, =1+(1- e)/(kV. Re, \/1+2%), V. =0.27, p* = ng"%pis the dimensionless pres-
ru; X

sure gradient, z=(z- z,)/V.H, z, =H/2 is the middle position of the mixing
layer.

ut

Figure 5: The estimated mean velocity profiles in the turbulent boundary layer in
adverse pressure gradients computed for p+=0.023; 0.0251 - the solid
lines 1-2 accordingly, and experimental data (symbols) from the data
base by Nagano et al [20].

The function of pressure gradient parameter has been estimated from the ex-
perimental data by Nagano et al [20]
e(p*) @18099p*’ - 2386.8p*° +36.579p" +0.7881 for adverse pressure gradients.
The computed mean velocity profiles in the turbulent boundary layer in adverse
pressure gradients are shown in Figure 5 together with the experimental data
[20].
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7 Final closure and conclusion

Generally speaking the Karman constant also should be defined as a function of
this parameter because the two-scale model (7) depends on the length scale
| © =1/k which can be related to the fundamental length scale | ;. Used a sym-

metry of the multiple density of a probability distribution function
f.(h,h,h,,-h)=f(hh,h, h) onecan defined the length scale corresponding to
a negative value R =-R asfollows |; =1 exp[l,(-R)] and consequently the
scale of velocity w' =-R' /I . Both scales depend on the main scales w;,I ;
due to a symmetry so that |’ =w;,w' =-1;. Therefore the Karman constant
should be defined as follows

1 él,(R)+1,(-R)u
k=2 expg (R) (Rt)l:J (10)
JR & 2 a
The formula (10) gives k =0.3931 for R =1.2193. This result is presented in Fig-
ure laby the horizontal line 5.

We have demonstrated the completely closed theory of wall turbulence. The
main parameter of this theory was established as the Reynolds number of dy-
namic roughness R =w;l * =hh /(h; +h?) . This parameter has been calculated
within a theory based on the mean velocity profile asymptotic behaviour as
R =1.2193. The Karman constant and the turbulent boundary layer fundamental
length scale have been defined as functions of this parameter. The estimated pa-
rametersk =0.3931, | ; » 9.16 and mean velocity and temperature profilesarein a

good agreement with the available experimental data.

References

1. Nikuradze, J. Gesetzmaessigkkeiten der turbulenten Stroemung in glatten Rohren,
Forsch. Arb. Ing. Wes., 356, 1932.

2. Schlichting, H. Boundary Layer Theory, McGraw-Hill, NY, 1979.

3. Purtell, L. P., Klebanoff, P. S. & Buckley, F. T. Turbulent Boundary Layers at Low Rey-
nolds Number. Phys. Fluids, 24(5), 802-811, 1981.

4. Smith R. W. Effect of Reynolds Number on the Structure of Turbulent Boundary Layers,
Ph.D. Thesis, Princeton University, 1994.

5. Zagarola, M. V. & Smits, A. J. A New Mean Velocity Scaling For Turbulent Boundary
Layers, Proceedings of FEDSM’ 98, 1998 ASME Fluids Engineering Division Summer Meet-
ing, June 21-25, 1998, Washington DC, 1998.

6. Osterlund, JM. Experimental studies of zero pressure gradient turbulent boundary layer
flow. Doctoral thesis. Stockholm, 1999.

7. Fernholz, H. H. & Finley, P .J. The incompressible zero-pressure-gradient turbulent
boundary layer: An assessment of the data. Prog. Aerospace Sci. 32, pp. 245 —-311,1996.

http://ej.kubagro.ru/2010/04/pdf/24.pdf



http://ej.kubagro.ru/2010/04/pdf/24.pdf

Hayunsrtit sxypaan KyoI'AY, Ne58(04), 2010 roaa 12

8. Millikan, C. M. A Critical Discussion of Turbulent Flows in Channels and Circular Tubes,
Proc. 5th Int. Congr. Appl. Mech. (Wiley, NY) 386-392,1938.

9. Trunev A. P. Smilarity theory for turbulent flow over natural rough surface in pressure
and temperature gradients. Air Pollution 1V. Monitoring, Smulation and Control ed. B. Caus-
sade, H. Power and C. A. Brebbia (Comp. Mech. Pub., Southampton) 275-286. 1996.

10. Trunev A. P. Theory of Turbulence and Model of Turbulent Transport in the Atmospheric
Surface Layer, Russian Academy of Sciences, Sochi, 160 p., 1999.

11. Trunev A. P. Theory of Turbulence and Turbulent Transport in the Atmosphere. 180 p.,
2001.

12. Nikuradse J. Stromungsgesetze in Rauhen Rohren ForschHft. Ver. Dt. Ing., 361, 1933.
13. Kutateladze S. S. Wall Turbulence (Nauka, Novoshbirsk) p.102, 1973.
14. Van Driest, E. R. On turbulent flow near awall, J. Aero. Sci. 23,1007,1956.

15. TennekesH. & Lumley J. L. A First Course in Turbulence, MIT Press, Cambridge, Mas-
sachusetts, 1972.

16. Cantwell B. J,, Coles D. E. & Dimotakis P. E. Structure and entrainment in the plane of
symmetry of aturbulent spot J. Fluid Mech, 87, 641-672, 1978

17. Hussain A. K. M. F. & Reynolds W. C. Measurements in fully development turbulent
channel flow, J. Fluid Ing. 97, 568-80, 1975.

18. Cebeci T. A model for eddy conductivity and turbulent Prandtl number, J. Heat Transfer,
95, 227, 1973.

19. Coles, D. E. The law of the wake in the turbulent boundary layer. J.Fluid Mech.1, pp.191
—226, 1956.

20. Nagano, Y ., Kasagi, N., Ota, T., Fujita, H., Yoshida, H. & Kumada, M., Data-Base on
Turbulent Heat Transfer, Department of Mechanical Engineering, Nagoya | nstitute of Tech-
nology, Nagoya, DATA No. FW BL004, 1992.

http://ej.kubagro.ru/2010/04/pdf/24.pdf



http://ej.kubagro.ru/2010/04/pdf/24.pdf

