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В работе представлена полностью замкнутая мо-
дель турбулентного пограничного слоя, получен-
ная из уравнения Навье-Стокса. Фундаментальные 
константы пристенной турбулентности, включая 
постоянную Кармана, определены из теории. Эта 
модель была развита для ускоренного и неизотер-
мического пограничного слоя. Профили средней 
скорости и температуры, вычисленные на основе 
модели  находятся в согласии с эксперименталь-
ными данными 

The completely closed model of wall turbulence was 
derived directly from the Navier-Stokes equation. The 
fundamental constants of wall turbulence including the 
Karman constant have been calculated within a theory. 
This model has been developed also for the accelerated 
and non-isothermal turbulent boundary layer flows. 
The estimated mean velocity, temperature and impuri-
ty concentration profiles as well as the spectral charac-
teristics of the streamwise velocity component are to 
be shown in a good agreement with the experimental 
data 
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1. Introduction 

Nikuradse [1] found that the turbulent boundary layer structure includes the re-
gion where the mean velocity increases with the distance from the wall as a 
logarithmic function  
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                                                 (1) 

where uτ  is the friction velocity, uτ τ ρ= / , τ is the wall shear stress, ρ  is the 
fluid density, z is the distance from the wall, ν  is the kinematic viscosity. Niku-
radse [1] established that κ = =0 4 550. , .c  for turbulent flows in smooth pipes.  

The logarithmic law (1) has been confirmed by many and many researchers of 
turbulence [2-7, 13-14,17]. Recently it was shown [5] that the log law can be 
excellent agreed with the experimental pip flow data for  

νν ττ /07.0/600 Ruzu << , where R  is the pip radius. For this range the log law 
constants were shown to be  15.6,436.0 0 == cκ . Also the log law was confirmed 
for a zero pressure gradient turbulent boundary layer flow in the precise wind-
tunnel experiment [6] and the constants were obtained  1.4,38.0 0 == cκ . To es-
timate the Karman constant the normalised local slope of the mean velocity pro-
file has been used as follows  ++=Ξ dUzd /ln  where ντ /zuz =+  is the inner layer 
variable - see Figure 1a. 
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So this universal law can be considered as a fundamental fact of the theory of 
turbulence. Nevertheless it may be wonder that this law never been derived from 
"first principles" excepting the similarity theory (see the typical arguments in 
ref. [2-8] and other).  
To derive this law we can begin with simple assumption that the logarithmic 
profile of velocity is a fragment in solution of hydrodynamics equations of vis-
cous fluid in a form of Navier-Stokes. Thus the way a question is put can be dif-
ferent: how the initial equations should be transformed so that in their solution 
boundary layer should contain logarithmic profile? This type of transformation 
was developed recently [9-11]. The idea of transformation is rather simple and 
as a matter, was driven at bringing into initial system equations of some set of 
random parameters, describing fluctuations of conventional boundary of viscous 
sublayer.  
To understand this idea we should note that the logarithmic distribution (1) is a 
typical  mean velocity profile measured in the turbulent flow bounded by a 
smooth wall. In a case of the turbulent flow over a rough wall Nikuradse [12] 
established (for sand-roughened pipes) that if the roughness height significantly 
exceeds the viscous sublayer thickness, then the mean velocity profile can be 
described by the logarithmic function as follows: 

U
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z
k

c
s

s
τ κ

= +
1

ln                                                 (2) 

where k s  is the characteristic scale of the sand roughness, κ ,cs  are empirical 
values (Nikuradse found that κ = =0 4 85. , .cs  for the completely rough regime). 

The sentence "the roughness height significantly exceeds the viscous sublayer 
thickness" means only that τν uk s />>  or in another form  1/ >>=+ ντukk ss . Obvi-
ously that +

sk  is the roughness Reynolds number and τν u/  is the characteristic 
thickness of viscous sublayer. Compared equations (1) and (2) one can conclude 
that there is an universal model described the turbulent boundary layer flows 
over smooth and rough surfaces. As it was shown [9-11] this model can be de-
rived directly from the Navier-Stokes equation and that the logarithmic distribu-
tion is an asymptotic solution of this model.  
 

2 Principles of theory  
Let ),( yxrr = is a function describing the roughness geometry and ),,(~~ tyxhh = is 
the thickness of viscous sublayer. The dynamic roughness surface can be de-
fined as follows h x y t r x y h x y t( , , ) ( , ) ~( , , )= + . Thus the mean dynamic roughness 
height is given by  τνλ ukh s /0

++= , where +
0λ  is the dimensionless thickness of 

viscous sublayer. It should be noted that in the case of a smooth plate for 
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0),( =yxr  the dynamic roughness surface equals to the viscous sublyer conven-
tional surface i.e. ),,(~),,( tyxhtyxh = .  

In Figure 1b the frequency diagram [13] of instantaneous thickness of a viscous 
sublayer in the turbulent boundary layer over a smooth surface is shown. The 
maximum of frequency diagram is established for 90 ≈= ++ zz . The first maxi-
mum of the inverse normalised local slope of the mean velocity profile 

++= zddUA ln/  also locates approximately at 9≈+z - see Figure 1a. Thus one 
can put 90 ≈+λ . 

For the flow over a smooth surface we have τνλ uh /0
+=  and in this case the loga-

rithmic velocity distribution in the form (1) is realised. When τνλ uk s /0
+>> and 

therefore skh ≈  then the mean velocity profile can be described by eq. (2). This 
two cases can be described automatically if the flow velocity vector, )v,,( wu=u , 
can be written as follows  

 u u= ( , , ( , . ), )x y z h x y t t                                                  (3)  

 

 
Figure 1: a) The inverse normalised local slope of the mean velocity profile 

++= zddUA ln/  estimated from the van Driest model [14]- the solid line 
6 and from the experimental data by Österlund [6] (1-4). Horizontal solid 
line (5) corresponds to the estimated quantity 54.2=A ; b) the frequency 
diagram of instantaneous thickness of viscous sublayer in the turbulent 
boundary layer over a smooth wall [13]. 

 
If the streamwise velocity has a logarithmic asymptotic,  )/ln( hzu ∝ ,  then also 
the mean velocity has the logarithmic asymptotic, )/ln( hzuU ∝= . 

Unfortunately this very simple idea can’t be used directly by substituting ex-
pression (3) in the Navier-Stokes equation, because the dynamic roughness sur-
face can’t be described by a regular function in a common case. 
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Therefore the dynamic roughness surface is advised to characterise by the set of 
the random continuous parameters  , h, h h, h yxt , with a well-known function of 
distribution f f h h h hS S x y t= ( , , , ) . The reason why only the first odder derivatives of 
the function ),,( tyxhh =  play role in this theory is explained by the volume aver-
aging used for a filtration of random functions. 
We suppose that  η = =z h const/  and let us consider a representative region of 
flow by a volume  dV L L dzx y= , where   L Lx y,  are typical scales of  flow in the x, 
y directions accordingly. Then let us consider subregion  dVs  lying in the repre-
sentative region of the flow, dV , in which the random parameters  h, h , h , h  t x y  are 
changed in the intervals  dhhh );( + , );( ttt dhhh + ,  dh hh xxx );( + ,  dhhh yyy );( + ac-
cordingly. The volume of  this subregion is given by    

dV dVf h h h h dhdh dh dhs s x y t x y t= ( , , , ) . 

The random function describing the flow velocity can be determined by the tot-

ing expression u u= ( , , ( , . ), )x y z h x y t t  in the volume dVs : 

~( , , , , ) lim ( , , , ),u uη
δ

η
δ

δ

t h h h h
V

x y t dxdydzx y t V dV
V

s
=

→ ∫
1                             

where δV  is an arbitrary volume enclosed in dV L L dzx y=  and containing dVs  as a 
whole.  
Obviously, ~( , , , , ),u η t h h h hx y t  is the random function, because it depends on the 
random parameters. The equations describing dynamics of random functions 
~ ~( , , , , ),u u= η t h h h hx y t immediately follow from the hydrodynamic equations of 
viscous fluid [9-11]. Statistical moment of an order m  of the random function 
~( , , , , ),u η t h h h hx y t  are determined as follows    

~ ( , ) ~ ( , , , , , ) ( , , , )u z t u t h h h h f h h h h dhdh dh dhm m
x y t s x y t x y t= ∫ η . 

This algorithm is a very effective in the wall turbulence problem because in this 
case the random functions ~( , , , , ),u t h h h hx y tη with fixed variables  tyx hhhh ,,,  have 
the properties which are similar to the mean flow parameters. Otherwise for the 
solutions presented for instance by the logarithmic function we can suppose that 

),,,/(~),,,(),,,,,(~~ ***
* tyxtyxtyxstyx hhhhzudhdhdhdhhhhhfhhhhtuu == ∫ η , 

where the parameters with stars can be estimated from the comparison of solu-
tions with experimental data or calculated from a theory considered below.  
A zero pressure gradient turbulent boundary layer over a smooth surface can be 
described by the completely closed equation system derived directly from the 
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Navier-Stokes equation (see [10-11] for details). Utilised the inner layer vari-
ables this model can be written in the form   


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where τuuu /~=+ , ++= λξ /z , 22/ yx hhhu +=+ νλ τ  is the characteristic dimen-
sionless scale of the viscous sublyer, )/arctan( xy hh=α , τu/v~v =+ , 

τuww /~=+ , +++++ −++= 00 /])sinvcos[( wwwu ξααχ , 22
*0 / yxt hhuhw +=+  is the sec-

ond scale of velocity in the wall turbulence, )(/ 22
yxtt hhhhR += ν  is the Reynolds 

number calculated on the dynamical roughness parameters (it should be noticed 
that the random parameters ++ λα ,,, 0wRt are not functions of time or space vari-
ables!).  
The boundary conditions for Eq. (4) are set as follows 

 au =′′=′==+ )0(,1)0(,0)0(,0)0( χχχ                            (5)  

where a  is a free (shooting) parameter. 
It should be noted that model (4) is related to the Blasius equation in the particu-
lar case when 2/1=tR , 0=α  and 1<<ξ . 

3 Constants of wall turbulence 
Let us suppose that for ∞→+z  the streamwise mean velocity profile has a loga-
rithmic asymptotic, i.e.  

+++ → zdzdu κ/1/ . 

Surmising that )(),(lim 0 tt RIRI =∞→ ξξ  we have from the first equation (4): 
+−+++ = zedzdu I // 0λ , and therefore  κλ /0Ie=+ . The last equation gives the con-

tinuous spectrum of the turbulent scales  )( tR++ = λλ . Used the dynamic rough-
ness Reynolds number in the form  ++= 00 λwRt   the equation κλ /0Ie=+  can be re-
written as follows  

)](exp[/ 00 tt RIRw −=+ κ  

For an uniqueness of the mean velocity profile we can suppose that for const=κ  
the second turbulent velocity scale has a stable value at small variations of the 
parameter  tR , i.e.  0/0 =+

tRw δδ . It gives 2193.1* ≈= tt RR . The turbulent boundary 
layer fundamental scale can be defined as κλ /)(

0

*
0 tRIe=+ . This quantity  approxi-

mately equals to the experimental value  16.90 ≈+λ  for 39.0=κ .  
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The function 0/1 Ie−+ = κλ  can be considered as a spectral density. The inverse 
length scale versus the Reynolds number is shown in Figure 2a.  This type of a 
spectral density is similar to the spectral density of the streamwise velocity fluc-
tuations in the turbulent boundary layers. The function )(00 tRww ++ =  is shown in 
Figure 2b. This type of spectrum is similar to the spectral density of the trans-
versal velocity pulsation [15]. Both functions represent the constructive model 
of the hydrodynamic chaos in this theory of turbulence. 

 

 
Figure 2: a) The inverse length scale  +λ/1  versus the Reynolds number of dy-

namic roughness  in double logarithmic scale. This type of a spectral 
density is similar to the spectral density of the streamwise velocity fluc-
tuations in the turbulent boundary layers; b) the normalised turbulent ve-
locity scale κ/0

+w  versus the Reynolds number of dynamic roughness. 
This type of spectrum is similar to the spectral density of the normal to 
the wall velocity pulsation. 

 
Our suggestion about the dynamical roughness structure in the wall region is 
that the parameter α  fluctuates around the mean value α π= / 2 . This structure 
looks like furrows elongated along of the mean flow stream lines in the viscous 
sublayer (see, for instance, [16]  where the visualisation of the coherent structure 
in the turbulent boundary layer is presented). In this case the first Eq. (4)  can be 
integrated once and the standard logarithmic profile can be derived for  
z + +>> λ0 : 

u z c+ += +
1

0κ
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Therefore, with the given constant κ  another constant of the mean velocity loga-
rithmic profile can be calculated from the last equation.  

 

4 Spectral characteristics of wall turbulence  
The spectral density of the streamwise velocity pulsation can be defined as fol-
lows 

2

0

22 ')('1lim)(')( udttu
T

dudkkF
T

T
===∫ ∫∫ ∞→

ωω  

where ω  is the characteristic radian frequency, Uk /ω=  is the flow wave num-
ber (Taylor's frozen turbulence hypothesis). To compare the spectral density 
with experimental data let us suppose that hht ω∝ , Therefore the Reynolds num-
ber calculated on the dynamical roughness parameters depends on the fre-
quency, 

*
2

*
22

*
22 Re/// +++ === ukHunhRt λνωλνω τ  

where ++= *
222 , λyx hhn  is the typical turbulent length scale of the streamwise ve-

locity pulsation, H  is the boundary layer height, ντ /Re* Hu= . Due to this rela-
tionship the spectral characteristic of the turbulent flow is related to the eigen 
spectrum of the value problem (4-5). In general case it can be like the power se-
ries  

∑
∞

=

−+=
1

)()(
i

i
ickF λ . 

Practically we can test one first term of this series. Then the spectral density can 
be proposed in the form 

)]([2
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                                   (6) 
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Figure 3:The estimated spectral density of the streamwise velocity pulsation in 
the turbulent channel flow (solid lines) for 9.4=+z  (a), and 7.11=+z (b), 
and the experimental data [17]  

 
where  Kc  is the normalising factor. Suggesting that the flow wave number de-
pends on the dynamical roughness Reynolds  number  as the  linear function, i.e. 

tRk ∝ , we have *
222

* Re/'13.2 τλ uuucK
++= . 

The spectral density given by Eq. 6 is shown in Figure 3 (solid lines) together 
with the experimental data [17] obtained in the turbulent channel flow. As it was 
established both spectral density parameters slowly depend on the distance from 
the wall. The best correlation was found in the viscose sublayer for 9.4=+z  

76.6* =+λ  01.1=Kc (Figure 3a) and for 7.11=+z , 45.5* =+λ , 82.1=Kc  (Figure 3b).   

 

5 Thermal turbulent boundary layer  
The model of turbulent flow (4) was developed to estimate the turbulent trans-
port of heat and impurities in the boundary layer. The mean temperature gradi-
ent can be written as follows (see [10-11] for details) 

[ ]
2

1

2
1

1

)1ln()(5.0expPr

ξ

ξξχ

+

+′−
=+

+
tP

dz
dT

                                  (7) 

where */)~( TTTT g −=+ ,  Tg  is the surface temperature, T~  is the turbulent flow 
temperature, T q c uH p* / ( )= ρ τ  is the turbulent scale of temperature, qH  is the heat 
flux from the rigid surface to the flow, pc  is the specific heat at constant pres-
sure of the gas, ,/1

++= Tz λξ 1Pr)( −+ = hT κλ  is the main turbulent scale of the ther-
mal layer, P w Tt Pr= + +

0 λ  is the Peclet number.  

The boundary conditions for equation (12) on a smooth wall and for the long 
distance from the wall are given by 

z T dT dz+ + + += = =0 0: ; / Pr                                     (8) 

z dT dz zh
+ + + +→ ∞ →: / /1 κ , 

where κh  is a constant which approximately equals to the Karman constant.   
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9

 
Figure 4. Mean temperature profiles in the turbulent boundary layer computed 

for the small (left) and for the large Prandtl numbers (right). The square 
symbols -the model of Sebeci [18]; the solid lines - the model (7-9).  

 
In special case when Pr → 0  a general solution of the boundary value problem 
(7)-(8) can be written as follows:   

T z
h

h
+ +=

1
κ

κArsh( Pr )                                                (9) 

The mean temperature profiles computed on equations (7), (9) are shown in Fig-

ure 4 (right) by solid lines together with the profiles computed on the model of 

Sebeci [18] - the square symbols. For the best correlation the function (Pr)tP was 

numerically approximated as follows Pt . / ( . ln Pr)= − +161 1 01  in the range of the 

Prandtl number 310Pr2 << . The agreement between two models in general is 

good.  

It should be noted that equation (7) is a typical two-scale model describing the 
interaction between the transition layer with  0λλ ≈  and thermal boundary layer 
with the main scale  1Pr)( −+ = hT κλ . Considering the mean flow as a "substance" 
with the Prandtl number  1Pr =  we can utilized equation (7) also to describe the 
mean velocity profile. 
 

6 Multi-scale model 
Analysing data shown  in Figure 1a one can found the several layers of different 
scale: 
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• The viscous syblayer  ++ ≈≤ zAz ,/1 κ ; 

• The transition layer which corresponds to the first maximum of A  for 
++ ≈ 0λz ; 

• The logarithmic layer where κ/1≈A ; 

• The mixing layer or the "wake region" [19] which corresponds to the second 
maximum of A  for 2/Hz ≈ ; 

• The free stream region where 0→A  for Hz ≥ . 
With this scales the model of turbulence (4) has been developed for the case of 
turbulent boundary layer flow in pressure gradient as follows 
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x
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∂
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3
*ρ

ν is the dimensionless pres-

sure gradient, 2/,/)( 0*0 HzHzzz =−= ς  is the middle position of the mixing 
layer.  
 

 
 

Figure 5: The estimated mean velocity profiles in the turbulent boundary layer in 
adverse pressure gradients computed for p+=0.023; 0.0251 - the solid 
lines 1-2 accordingly, and experimental data (symbols) from the data 
base by Nagano et al [20]. 

 
The function of pressure gradient parameter has been estimated from the ex-
perimental data by Nagano et al [20] 

7881.0579.368.2386118099)(
23

++−≅ ++++ ppppε  for adverse pressure gradients. 
The computed mean velocity profiles in the turbulent boundary layer in adverse 
pressure gradients are shown in Figure 5 together with the experimental data 
[20]. 
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7 Final closure and conclusion   
Generally speaking the Karman constant also should be defined as a function of 
this parameter because the two-scale model (7) depends on the length scale 

κλ /1=+
v  which can be related to the fundamental length scale +

0λ . Used a sym-
metry of the multiple density of a probability distribution function 

),,,(),,,( tyxtyx hhhhfhhhhf SS =−  one can defined the length scale corresponding to 
a negative value *

tt RR −=  as follows  )](exp[ *
0 tin RI −= ++

νλλ  and consequently the 
scale of velocity  ++ −= intin Rw λ/* . Both scales depend on the main scales ++

00 ,λw  
due to a symmetry so that  ++++ −== 00 , λλ inin ww . Therefore the Karman constant 
should be defined as follows                     








 −+
=

2
)()(

exp1 *
0

*
0

*
tt

t

RIRI
R

κ                                  (10) 

The formula (10) gives 3931.0=κ  for 2193.1* =tR . This result is presented in Fig-
ure 1a by the horizontal line 5.   
We have demonstrated the completely closed theory of wall turbulence. The 
main parameter of this theory was established as the Reynolds number of dy-
namic roughness )/( 22

0 yxtt hhhhwR +== ++λ  . This parameter has been calculated 
within a theory based on the mean velocity profile asymptotic behaviour as 

2193.1* =tR . The Karman constant and the turbulent boundary layer fundamental 
length scale have been defined as functions of this parameter. The estimated pa-
rameters 3931.0=κ , 16.90 ≈+λ  and mean velocity and temperature profiles are in a 
good agreement with the available experimental data. 
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