УДК 004.8 06.01.01 Общее земледелие, растениеводство

АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ ЗАВИСИМОСТИ СУБЪЕКТИВНЫХ СОМЕЛЬЕ-ОЦЕНОК КАЧЕСТВА ВИНА ОТ ЕГО ОБЪЕКТИВНЫХ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

Луценко Евгений Вениаминович д.э.н., к.т.н., профессор Scopus Author ID: 57188763047 РИНЦ SPIN-код: 9523-7101 prof.lutsenko@gmail.com http://lc.kubagro.ru

Печурина Елена Каримовна РИНЦ SPIN-код: 1952-4286

geskov@mail.ru

Сергеев Александр Эдуардович к.ф.-м.н. доцент РИНЦ SPIN-код: 7837-9566 Кубанский государственный аграрный университет имени И.Т.Трубилина, Краснодар, Россия

Сомелье оценивает качество вина на основе своих субъективных ощущений. При этом то, что говорит сомелье, когда оценивает вино, непосвященному в это искусство трудно или вообще невозможно понять рационально. Сам процесс оценивания качества вина сомелье не поддается формализации и осуществляется полностью на чувственном уровне. Иногда разные сомелье по-разному оценивают одно и тоже вино, разлитое из одной и той же бочки в бутылки разной престижности с наклейками, отличающимися количеством звездочек. В этой связи возникает по крайней мере два закономерных и естественных вопроса. Первый вопрос о том, связаны ли как-либо субъективные сомелье-оценки качества вина с его объективными физико-химическими свойствами? Второй вопрос возникает в случае положительного ответа на первый: можно ли анализируя объективными методами физико-химические свойства вина предсказать его субъективную оценку различными сомелье или некоторым «обобщенным сомелье», обобщающим много подобных субъективных оценок? Данная статья посвящена получению аргументированных ответов на эти вопросы. Целью данной работы, представляющей большой научный и практический интерес, является создание модели, обеспечивающей автоматизированную оценку качества вина на основе анализа его объективных физико-химические свойства, совпадающую с его сомелье-оценкой. Для достижения этой цели применяется Автоматизированный системнокогнитивный анализ (АСК-анализ) и его программный инструментарий – интеллектуальная

UDC 004.8 General agriculture and crop production

AUTOMATED SYSTEM-COGNITIVE ANALYSIS OF THE DEPENDENCE OF SUBJECTIVE SOMMELIER WINE QUALITY ASSESSMENT ON ITS OBJECTIVE PHYSICAL AND CHEMICAL PROPERTIES

Lutsenko Evgeniy Veniaminovich Dr.Sci.Econ., Cand.Tech.Sci., professor Scopus Author ID: 57188763047 RSCI SPIN-code: 9523-7101 prof.lutsenko@gmail.com http://lc.kubagro.ru

Pechurina Elena Karimovna RSCI SPIN-code: 1952-4286

geskov@mail.ru

Sergeev Aleksandr Eduardovich Cand.Phys.-Math.Sci., associate Professor RSCI SPIN-code: 7837-9566

Kuban State Agrarian University, Krasnodar, Russia

Sommelier evaluates the quality of wine on the basis of their subjective feelings. At the same time, what the sommelier says when evaluating wine, it is difficult or impossible to rationally understand for the uninitiated to this art. The process of assessing the quality of wine by sommelier can not be formalized and is carried out entirely at the sensual level. Sometimes, different sommeliers differently evaluate the same wine poured from the same barrel into bottles of different prestige, with stickers differing in the number of stars. This raises at least two legitimate and natural questions. The first question is whether any subjective sommelier evaluations of the quality of wine are connected with its objective physical and chemical properties? The second question arises in the case of a positive answer to the first one: is it possible to analyze the objective methods of physical and chemical properties of wine to predict its subjective assessment by various sommeliers or some "generalized sommelier", generalizing many such subjective assessments? This article is devoted to obtaining reasoned answers to these questions. The purpose of this work, which is of great scientific and practical interest, is to create a model that provides an automated assessment of the quality of wine based on the analysis of its objective physical and chemical properties, coinciding with its sommelier-evaluation. To achieve this goal, we use Automated system-cognitive analysis (ASC-analysis) and its software tools – the intelligent system called "Eidos". A detailed numerical example based on 1599 real-world examples of sommelier evaluation of wine quality with known physical and chemical properties is considered. In addition to the answer to the two questions in the article, there is a study of the created

система «Эйдос». Рассматривается подробный численный пример, основанный на 1599 реальных примерах оценки сомелье качества вин с известными физико-химическими свойствами. Кроме ответа на два поставленных вопроса, в статье приводится и исследование созданной системно-когнитивной модели

system-cognitive model

Keywords: AUTOMATED SYSTEM-COGNITIVE

ANALYSIS, ASC-ANALYSIS, "EIDOS" SYSTEM,

SOMMELIER, WINE QUALITY, PHYSICAL AND

Ключевые слова: АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ, АСК-АНАЛИЗ, СИСТЕМА «ЭЙДОС», СОМЕЛЬЕ, КАЧЕСТВО ВИНА, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ВИНА

СКИЕ CHEMICAL PROPERTIES OF WINE

Doi: 10.21515/1990-4665-149-015

#### СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                                                                                         | 2  |
|----------------------------------------------------------------------------------------------------------------------------------|----|
| ЗАДАЧА 1: КОГНИТИВНАЯ СТРУКТУРИЗАЦИЯ ПРЕДМЕТНОЙ ОБЛАСТИ                                                                          | 6  |
| ЗАДАЧА 2: ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ И ФОРМАЛИЗАЦИЯ ПРЕДМЕТНОЙ<br>ОБЛАСТИ                                                        | 6  |
| ЗАДАЧА 3: СИНТЕЗ И ВЕРИФИКАЦИЯ СТАТИСТИЧЕСКИХ И СИСТЕМНО-КОГНИТИВН<br>МОДЕЛЕЙ И ВЫБОР НАИБОЛЕЕ ДОСТОВЕРНОЙ МОДЕЛИ                |    |
| ЗАДАЧА 4: РЕШЕНИЕ РАЗЛИЧНЫХ ЗАДАЧ В НАИБОЛЕЕ ДОСТОВЕРНОЙ МОДЕЛИ                                                                  | 18 |
| Подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация)                                        | 20 |
| МОДЕЛИ                                                                                                                           |    |
| 4.3.2. Агломеративная когнитивная классов                                                                                        | 26 |
| 4.3.4. Агломеративная когнитивная кластеризация значений факторов                                                                | 29 |
| 4.3.6. 3d-интегральные когнитивные карты                                                                                         | 32 |
| 4.3.8. Сила влияния значений физико-химических свойств вина и самих этих свойств на сомел оценки качества вина                   |    |
| 4.3.8. Степень детерминированности (обусловленности) сомелье-оценок качества вина его объективными физико-химическими свойствами | 39 |
| 5. ВЫВОДЫ                                                                                                                        | 40 |
| CHIACOL HATEDATVOLI                                                                                                              | 11 |

#### Введение

Сомелье оценивает качество вина на основе своих субъективных ощущений.

Однако, то, что говорит сомелье, когда оценивает вино, непосвященному в это искусство трудно или вообще невозможно понять рационально. Кроме того считается, что сам процесс оценивания качества вина сомелье не поддается формализации и осуществляется полностью на чувственном уровне. Более того, иногда разные сомелье по-разному

оценивают одно и тоже вино, разлитое из одной и той же бочки в бутылки разной престижности с наклейками, отличающимися количеством звездочек. Это можно считать последней каплей дегтя, переполнившей бочку с вином, т.е. **проблемой**, которую надо решать.

В этой связи возникает по крайней мере два закономерных и естественных вопроса.

<u>Первый вопрос</u> о том, связаны ли как-либо субъективные сомелье оценки качества вина с его объективными физико-химическими свойствами?

<u>Второй вопрос</u> возникает в случае положительного ответа на первый: можно ли анализируя объективными методами физико-химические свойства вина предсказать его субъективную оценку различными сомелье или даже некоторым «обобщенным сомелье», обобщающим много подобных субъективных оценок?

Данная статья посвящена получению аргументированных ответов на эти вопросы.

**Целью** данной работы, представляющей большой научный и практический интерес, является создание модели, обеспечивающей автоматизированную оценку качества вина на основе анализа его объективных физико-химические свойства, совпадающую с его сомельеоценкой.

Для достижения этой цели применяется Автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий — интеллектуальная система «Эйдос». Рассматривается подробный численный пример, основанный на 1599 реальных примерах оценки сомелье качества вин с известными физико-химическими свойствами. Кроме ответа на два поставленных вопроса в статье приводится и исследование созданной системно-когнитивной модели.

Для достижения этой цели необходимо решить следующие **задачи**, которые получаются путем декомпозиции цели и являются этапами ее достижения:

Задача 1: когнитивная структуризация предметной области.

Задача 2: подготовка исходных данных и формализация предметной области.

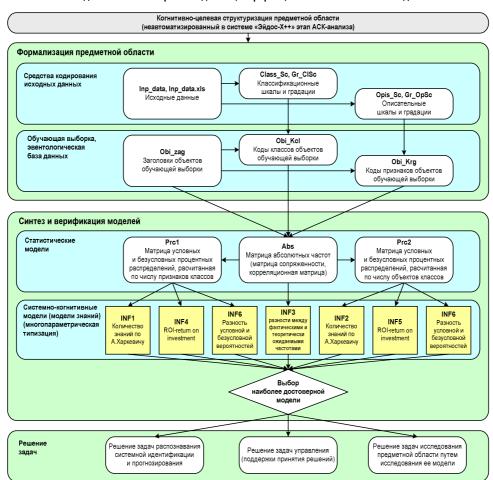
Задача 3: синтез и верификация статистических и системно-когнитивных моделей и выбор наиболее достоверной модели.

Задача 4: решение различных задач в наиболее достоверной модели:

- подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация);
  - подзадача 4.2. Поддержка принятия решений;
- подзадача 4.3. Исследование моделируемой предметной области путем исследования ее модели (когнитивные диаграммы классов и значений факторов, агломеративная когнитивная кластеризация классов и

значений факторов, нелокальные нейроны и нейронные сети, 3dинтегральные когнитивные карты, когнитивные функции).

Эти задачи по сути представляют собой этапы Автоматизированного системно-когнитивный анализа (АСК-анализ), который и поэтому и предлагается применить для их решения.


АСК-анализ представляет собой метод искусственного интеллекта, разработанный проф. Е.В. Луценко в 2002 году [1] для решения широкого класса задач идентификации, прогнозирования, классификации, диагностики, поддержки принятия решений и исследования моделируемой предметной области путем исследования ее модели. АСК-анализ доведен до **инновационного** уровня благодаря тому, что имеет свой программный инструментарий — универсальную когнитивную аналитическую систему «Эйдос-Х++» (система «Эйдос»).

**Система «Эйдос»** выгодно отличается от других интеллектуальных систем следующими параметрами:

- разработана в универсальной постановке, не зависящей от предметной области. Поэтому она является универсальной и может быть применена во многих предметных областях (<a href="http://lc.kubagro.ru/aidos/index.htm">http://lc.kubagro.ru/aidos/index.htm</a>);
- находится в полном открытом бесплатном доступе (<a href="http://lc.kubagro.ru/aidos/\_Aidos-X.htm">http://lc.kubagro.ru/aidos/\_Aidos-X.htm</a>), причем с актуальными исходными текстами (<a href="http://lc.kubagro.ru/\_AIDOS-X.txt">http://lc.kubagro.ru/\_AIDOS-X.txt</a>);
- является одной из первых отечественных систем искусственного интеллекта персонального уровня, т.е. она не требует от пользователя специальной подготовки в области технологий искусственного интеллекта (есть акт внедрения системы «Эйдос» 1987 года) (<a href="http://lc.kubagro.ru/aidos/aidos02/PR-4.htm">http://lc.kubagro.ru/aidos/aidos02/PR-4.htm</a>);
- обеспечивает устойчивое выявление в сопоставимой форме силы и направления причинно-следственных зависимостей в неполных зашумленных взаимозависимых (нелинейных) данных очень большой размерности числовой и не числовой природы, измеряемых в различных типах шкал (номинальных, порядковых и числовых) и в различных единицах измерения (т.е. не предъявляет жестких требований к данным, которые невозможно выполнить, а обрабатывает те данные, которые есть);
- содержит большое количество локальных (поставляемых с инсталляцией) и облачных учебных и научных приложений (в настоящее время их 31 и 149, соответственно) (http://lc.kubagro.ru/aidos/Presentation\_Aidos-online.pdf);
- обеспечивает мультиязычную поддержку интерфейса на 44 языках. Языковые базы входят в инсталляцию и могут пополняться в автоматическом режиме;
- поддерживает on-line среду накопления знаний и широко используется во всем мире (<a href="http://aidos.byethost5.com/map3.php">http://aidos.byethost5.com/map3.php</a>);

- наиболее трудоемкие в вычислительном отношении операции синтеза моделей и распознавания реализует с помощью графического процессора (GPU), что на некоторых задачах обеспечивает ускорение решение этих задач в несколько тысяч раз, что реально обеспечивает интеллектуальную обработку больших данных, большой информации и больших знаний;
- обеспечивает преобразование исходных эмпирических данных в информацию, а ее в знания и решение с использованием этих знаний задач классификации, поддержки принятия решений и исследования предметной области путем исследования ее системно-когнитивной модели, генерируя при этом очень большое количество табличных и графических выходных форм (развития когнитивная графика), у многих из которых нет никаких аналогов в других системах (примеры некоторых форм можно посмотреть в работе: <a href="http://lc.kubagro.ru/aidos/aidos18\_LLS/aidos18\_LLS.pdf">http://lc.kubagro.ru/aidos/aidos18\_LLS/aidos18\_LLS.pdf</a>).

Всем этим и обусловлен выбор АСК-анализа и его программного инструментария – интеллектуальной системы «Эйдос» в качестве метода и инструмента решения поставленной проблемы (рисунок 1).



Последовательность обработки данных, информации и знаний в системе «Эйдос-X++»

Рисунок 1. Последовательность преобразования данных в информацию, а ее в знания и решения задач в АСК-анализе и системе «Эйдос»

Рассмотрим решение поставленных задач в численном примере.

### Задача 1: когнитивная структуризация предметной области

На этапе когнитивно-целевой структуризации предметной области мы неформализуемым путем решаем на качественном уровне, что будем рассматривать в качестве факторов, действующих на моделируемый объект (причин), а что в качестве результатов действия этих факторов (последствий).

При этом необходимо отметить, что системно-когнитивные модели (СК-модели) отражают лишь сам факт наличия зависимостей между значениями факторов и результатами их действия. Но они не отражают причин и механизмов такого влияния. Это значит, что содержательная интерпретация СК-моделей — это компетенция специалистов-экспертов хорошо разбирающихся в данной предметной области. Иногда встречается ситуация, когда и то, что на первый взгляд является причинами, и то, что казалось бы является их последствиями, на самом деле является последствиями неких глубинных причин, которых мы не видим и никоим образом непосредственно не отражаем в модели.

В данной работе в качестве классификационной шкалы выбрана субъективная сомелье-оценка качества вина, а в качестве факторов, влияющих на эту оценку — различные устанавливаемые объективными методами физико-химические свойства вина.

### Задача 2: подготовка исходных данных и формализация предметной области

Исходные данные для данной статьи (таблица 1) взяты с известных сайтов с данными для машинного обучения Kaggle и UCI [2, 3]. Авторами этих данных являются авторы работы: [4].

Из-за ограничений на объем статьи в таблице 1 приведен фрагмент исходных данных из 40 строк, что составляет около 2.5% всех наблюдений (полная таблица включает 1599 наблюдение).

Затем с параметрами, показанными на рисунке 2, запустим режим 2.3.2.2 системы «Эйдос», представляющий собой автоматизированный программный интерфейс (API) с внешними данными табличного типа. На рисунке 2 приведены реально использованные параметры.

Обратим внимание, что заданы адаптивные интервалы, учитывающее неравномерность распределения данных по значениям. В классификационных шкалах задано 5 числовых интервальных значений (5-бальная шкала), а в описательных -10.

На рисунке 3 приведен Help данного режима, в котором объясняется принцип организации таблицы исходных для данного режима.

Таблица 1 – Исходные данные для ввода в систему «Эйдос» (фрагмент)<sup>1</sup>

| Tac           | олица I          | <u> — Исх</u> | одные     | даннь      | ве для в            | вода                 | в сист   | ему «Эйд         | 10c» (d      | ррагме       | HT)          |
|---------------|------------------|---------------|-----------|------------|---------------------|----------------------|----------|------------------|--------------|--------------|--------------|
|               |                  |               | ,         |            | xide                | xide                 |          |                  |              |              |              |
| fixed acidity | volatile acidity | g             | sugar     | (0         | free sulfur dioxide | total sulfur dioxide |          |                  | တ္           |              |              |
| aci           | <u>e</u>         | citric acid   | <u>la</u> | chlorides  | ij                  | sulf                 | t        |                  | sulphates    | 0            | >            |
| p             | lati             | i<br>Si       | esidual   | lori       | Φ<br>O              | a                    | density  | _                | lph          | alcohol      | quality      |
|               |                  |               |           |            |                     | tot                  |          | рН               |              |              | nb           |
| 1             | 7,4              | 0,70          | 0,00      | 1,9        | 0,076               | 11                   | 34       | 0,9978           | 3,51         | 0,56         | 9,4          |
| 2             | 7,8              | 0,88          | 0,00      | 2,6        | 0,098               | 25                   | 67       | 0,9968           | 3,20         | 0,68         | 9,8          |
| 3             | 7,8              | 0,76          | 0,04      | 2,3        | 0,092               | 15                   | 54       | 0,9970           | 3,26         | 0,65         | 9,8          |
| 4             | 11,2             | 0,28          | 0,56      | 1,9        | 0,075               | 17                   | 60       | 0,9980           | 3,16         | 0,58         | 9,8          |
| 5             | 7,4              | 0,70          | 0,00      | 1,9        | 0,076               | 11                   | 34       | 0,9978           | 3,51         | 0,56         | 9,4          |
| 6<br>7        | 7,4              | 0,66          | 0,00      | 1,8        | 0,075               | 13<br>15             | 40<br>59 | 0,9978           | 3,51         | 0,56         | 9,4          |
| 8             | 7,9<br>7,3       | 0,60<br>0,65  | 0,06      | 1,6<br>1,2 | 0,069<br>0,065      | 15                   | 21       | 0,9964<br>0,9946 | 3,30<br>3,39 | 0,46<br>0,47 | 9,4          |
| 9             | 7,8              | 0,63          | 0,00      | 2,0        | 0,063               | 9                    | 18       | 0,9948           | 3,36         | 0,47         | 9,5          |
| 10            | 7,5              | 0,50          | 0,36      | 6,1        | 0,073               | 17                   | 102      | 0,9978           | 3,35         | 0,80         | 10,5         |
| 11            | 6,7              | 0,58          | 0,08      | 1,8        | 0,097               | 15                   | 65       | 0,9959           | 3,28         | 0,54         | 9,2          |
| 12            | 7,5              | 0,50          | 0,36      | 6,1        | 0,071               | 17                   | 102      | 0,9978           | 3,35         | 0,80         | 10,5         |
| 13            | 5,6              | 0,62          | 0,00      | 1,6        | 0,089               | 16                   | 59       | 0,9943           | 3,58         | 0,52         | 9,9          |
| 14            | 7,8              | 0,61          | 0,29      | 1,6        | 0,114               | 9                    | 29       | 0,9974           | 3,26         | 1,56         | 9,1          |
| 15            | 8,9              | 0,62          | 0,18      | 3,8        | 0,176               | 52                   | 145      | 0,9986           | 3,16         | 0,88         | 9,2          |
| 16            | 8,9              | 0,62          | 0,19      | 3,9        | 0,170               | 51                   | 148      | 0,9986           | 3,17         | 0,93         | 9,2          |
| 17            | 8,5              | 0,28          | 0,56      | 1,8        | 0,092               | 35                   | 103      | 0,9969           | 3,30         | 0,75         | 10,5         |
| 18            | 8,1              | 0,56          | 0,28      | 1,7        | 0,368               | 16                   | 56       | 0,9968           | 3,11         | 1,28         | 9,3          |
| 19            | 7,4              | 0,59          | 0,08      | 4,4        | 0,086               | 6                    | 29       | 0,9974           | 3,38         | 0,50         | 9,0          |
| 20            | 7,9              | 0,32          | 0,51      | 1,8        | 0,341               | 17                   | 56       | 0,9969           | 3,04         | 1,08         | 9,2          |
| 21            | 8,9              | 0,22          | 0,48      | 1,8        | 0,077               | 29                   | 60       | 0,9968           | 3,39         | 0,53         | 9,4          |
| 22            | 7,6              | 0,39          | 0,31      | 2,3        | 0,082               | 23                   | 71       | 0,9982           | 3,52         | 0,65         | 9,7          |
| 23            | 7,9              | 0,43          | 0,21      | 1,6        | 0,106               | 10                   | 37       | 0,9966           | 3,17         | 0,91         | 9,5          |
| 24            | 8,5              | 0,49          | 0,11      | 2,3        | 0,084               | 9                    | 67       | 0,9968           | 3,17         | 0,53         | 9,4          |
| 25            | 6,9              | 0,40          | 0,14      | 2,4        | 0,085               | 21                   | 40       | 0,9968           | 3,43         | 0,63         | 9,7          |
| 26            | 6,3              | 0,39          | 0,16      | 1,4        | 0,080               | 11                   | 23       | 0,9955           | 3,34         | 0,56         | 9,3          |
| 27            | 7,6              | 0,41          | 0,24      | 1,8        | 0,080               | 4                    | 11       | 0,9962           | 3,28         | 0,59         | 9,5          |
| 28            | 7,9              | 0,43          | 0,21      | 1,6        | 0,106               | 10                   | 37       | 0,9966           | 3,17         | 0,91         | 9,5          |
| 29<br>30      | 7,1              | 0,71          | 0,00      | 1,9        | 0,080               | 14<br>8              | 35       | 0,9972           | 3,47         | 0,55         | 9,4          |
| 31            | 7,8              | 0,65          | 0,00      | 2,0<br>2,4 | 0,082               | 17                   | 16<br>82 | 0,9964<br>0,9958 | 3,38         | 0,59<br>0,54 | 9,8          |
| 32            | 6,7<br>6,9       | 0,68<br>0,69  | 0,07      | 2,4        | 0,089<br>0,105      | 22                   | 37       | 0,9966           | 3,35<br>3,46 | 0,54         | 10,1<br>10,6 |
| 33            | 8,3              | 0,69          | 0,00      | 2,3        | 0,103               | 15                   | 113      | 0,9966           | 3,40         | 0,57         | 9,8          |
| 34            | 6,9              | 0,60          | 0,12      | 10,7       | 0,083               | 40                   | 83       | 0,9993           | 3,45         | 0,52         | 9,4          |
| 35            | 5,2              | 0,32          | 0,12      | 1,8        | 0,103               | 13                   | 50       | 0,9957           | 3,38         | 0,55         | 9,2          |
| 36            | 7,8              | 0,65          | 0,00      | 5,5        | 0,086               | 5                    | 18       | 0,9986           | 3,40         | 0,55         | 9,6          |
| 37            | 7,8              | 0,60          | 0,14      | 2,4        | 0,086               | 3                    | 15       | 0,9975           | 3,42         | 0,60         | 10,8         |
| 38            | 8,1              | 0,38          | 0,28      | 2,1        | 0,066               | 13                   | 30       | 0,9968           | 3,23         | 0,73         | 9,7          |
| 39            | 5,7              | 1,13          | 0,09      | 1,5        | 0,172               | 7                    | 19       | 0,9940           | 3,50         | 0,48         | 9,8          |
| 40            | 7,3              | 0,45          | 0,36      | 5,9        | 0,074               | 12                   | 87       | 0,9978           | 3,33         | 0,83         | 10,5         |
|               | , ,              | ,             | ,         | ,          |                     |                      | <u> </u> |                  | ,            |              |              |

<sup>&</sup>lt;sup>1</sup> Полную таблицу исходных данных, представленную в таблице 1, можно скачать с FTP-сервера системы «Эйдос» по ссылке: <a href="http://aidos.byethost5.com/Source\_data\_applications/Applications-000148/Inp\_data.xls">http://aidos.byethost5.com/Source\_data\_applications/Applications-000148/Inp\_data.xls</a>

| трасний, а также обучающей и распознаваемой выборки из основе базы исходики данных: "Ing_data"  Зацейте тип файла колошени данных: "Ing_data"  Зацейте тип файла колошени данных: "Ing_data"  Зацейте тип файла колошени данных: "Ing_data"  Зацейте тип файла колошения данных: "Ing_data"  Зацейте пип файла колошения данных: "Ing_data"  Зацейте дивтают ОСУСТОВИЕ Данных (Научи и пробель сигнать ОСУСТОВИЕ Данных | 2.3.2.2. Универсальный программи                           | 1                            | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| © Migray Processor OTCH CTREM aemain (Fig. 498)   Creatager XLS-easing   Creatager XLS-eas |                                                            | * 574                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ОВЕ - ВАВЕТ И (ВРАТИ)  ОВЕТ - ВАВЕТ ВАВЕТ В ОВЕТ - ВАВЕТ В ОВ  | Задайте тип файла исходных данных:                         | "Inp_data":                  | Задайте параметры:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ОВЕ - ВАВЕТ И (ВРАТИ)  ОВЕТ - ВАВЕТ ВАВЕТ В ОВЕТ - ВАВЕТ В ОВ  |                                                            | 1                            | С Нули и пробелы считат                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ь ОТСУТСТВИЕМ данных                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Свети развите пределения с постоя по постоя пределения по постоя пределения по постоя пределения по постоя пределения по постоя по постоя пределения по постоя пределения по постоя по  | ***************************************                    | Стандарт XLS-файла           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| СSV - Comme Separated Values    Требования к файлу диализми столбор и поссовна диализми   Требования к файлу диализми столбор достовнующих диализми столбор колостания диализми   Требования к файлу диализми столбор колостания диализми   Требования к файлу диализми столбор колостания диализми   Требования к файлу диализми столбор диализми диализми   Требования к файлу диализми столбор диализми диализми   Требования к файлу диализми столбор диализми диализми   Требования к файлу диализми диализми диализми диализми   Требования к файлу диализми диал |                                                            | Стандалт DBF-файда           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Нечальный столбец классиченационных шкалт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Нечальный столбец классиченационных шкалт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Запайте пиапазон столбиов классиф                          | икапионных шкал              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в описательных шкал:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Задайте режиме  Формализация градиченной области (не основе "Inp_data")  Задайте режиме  Формализация градиченной области (не основе "Inp_data")  Генерация распознаваемной выборки (не основе "Inp_data")  «Не преченения сценарный мета дАК-менализа  Пречения специя героргации тактоговых полей "Inp_data":  "Интерретация ТХТ-полей классов.  Зачения полей текстовых полей "Inp_data":  "Интерретация ТХТ-полей принямись.  Зачения полей текстовых ополей "Inp_data":  "Интерретация ТХТ-полей принямись.  Зачения полей текстовых ополей "Inp_data":  "Интерретация ТХТ-полей принямись.  Зачения полей текстовых ополей "Inp_data":  "Интерретация ТХТ-полей принямись.  "Зачения полей текстовых ополей принямись.  "Ополько негоральный метореальном чистовых этичений (негорьеер: "IV.2459873.0000000, 178545.6666687)")  [матричер: "Интереретация том негоральный и метореальном чистовых этичений (негорьеер: "IV.3459873.0000000, 178545.6666687)")  [матричер: "Интереретация на пречиты и начинение выбрания и начинения выбрания и начинения выбрания и на основе выевния выбрания выбрания и на основе выевния выбрания на основения выбрания общения выбрания и на основения выевния выбрания на основения выбрания общения выбрания и на основения выевния выбрания на основения выбрания основения выбрания на основения выбрания общения выбрания на основения выбрания основения выбрания на основения выбрания основения выбрания на основения выбрания основения выбрания основения выбрания на основения выбрания выбрания на основения выбрания выбрания на основения выбрания выбрания на о |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |  |  |  |  |  |
| © Формализации предъетной области (на основе "Ing. data")  Пенерами распознаваемой выбории (на основе "Ing. patp")  Заданне параметров формарования системые полоей интерретации текстовых полей "Ing. data".  Приченить спецьитероретации текстовых полей причений текстовых полей причений причений текстовых полей причений текстовых полей причений причений текстовых полей причений пета, АСК-анализа  Параметры интерпретации значений текстовых полей причений причений причений причений причений причений причений текстовых полей причений причени  |                                                            |                              | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Применть спец интереальное деятельное интереальное ревельм числом наблюдений  Задание парьметров формирования сценариев или способа интерпретации текстовых полей "Ing_data":  Применть спец интерпретацию текстовых полей классов  Применть спец интерпретацию текстовых полей применть интерпретации текстовых полей применть интерпретацию текстовых полей применть интерпретации текстовых применть интер  | Задайте режим:                                             |                              | Задайте способ выбора ра:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | змера интервалов:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Причененть спец интерреации от деления и положения полей техтовых полей "Inp_data":  Причененть спец интерретации от исстовых полей и "Inp_data":  Причененть спец интерретации от исстовых полей и "Inp_data":  Причення спец интерретации от исстовых полей и "Inp_data":  Причения от полей техтовых полей и "Inp_data":  Интергретации ТХТ-полей какосов:  Значения полей техтовых классов-изичений интерратации от исстовых полей причения институтельных исстовых полей причения институтельных исстовых полей причения институтельных исповые от полей техтовых полей причения институтельных исповые от полей причения и "Inp_data" рассонатриваются как целое  Интеррретации ТХТ-полей крассова инспитутельных исповые от полей причения институтельных исповые от полей техтовых полей причения и полей причени  | <ul> <li>Формализации предметной обл.</li> </ul>           | асти (на основе "Inp. data") | С Равные интервалы с ра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | эзным числом наблюдений                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| С Приченить сценарный метод АСК-анализа Приченить спец негерпретацию текстовых полей классое Параметры интерпретации значений текстовых полей "Inp_data":  Интерпретация ТХТ-полей подсовой Заченных полей текстовых полей классое Заченных полей текстовых полей классое Заченных полей текстовых полей подовой компректуры интерпретации значений текстовых полей "Inp_data":  Интерпретация ТХТ-полей подовой классов значеных полей текстовых полей подовой компректуры интерпретации значений текстовых полей "Inp_data":  Интерпретация ТХТ-полей подовой компректуры значеных подовой классов: Заченных полей текстовых классовых интеревальных человые эначеных подовой компректуры значеных подовой классов:  (интринер: "Изинанальное") (напринер: "Изинанальное") (напринер: "Минанальное") (напринер: "Минанальн  |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Параметры интерпретации значений текстовых полей "Inp_data":  "Интерпретация ТХТ-полей классов:  Значения полей текстовых классиченкационных шкал файла исходных данных "Inp_data" расснатриваются как целов  "Интерпретация ТХТ-полей классов:  Значения полей текстовых классиченкационных шкал файла исходных данных "Inp_data" расснатриваются как целов  "Только зентервальные числовые эначения (магрижер: "Из-159873,0000000, 178545,6666667)")  "И интерпальные числовые эначения и интервальных числовых эначений (магрижер: "Минимальное: 1/3-159873,0000000, 178545,6666667)")  "Дк                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Задание параметров формирования                            | сценариев или способа интерг | претации текстовых полей "Inp_da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ita":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Применить спец. негерпретацию текстовых полей гринанию  Параметры интерпретации значений текстовых полей "Inp_data":  Интерпретация ТХТ-полей классов:  Значения полей текстовых классонячнационных шкал файла исходных данных "Inp_data" расснатриваются как целов  Интерпретация ТХТ-полей классов:  Значения полей текстовых классонячнационных шкал файла исходных данных "Inp_data" расснатриваются как целов  Интерпретация ТХТ-полей классов:  Значения полей текстовых классонячнационных шкал файла исходных данных "Inp_data" расснатриваются как целов  Интерпретация ТХТ-полей принамаю.  Интерпретация ТХТ-полей принамаю.  Интерпретация ТХТ-полей принамаю.  Значения полей текстовых описательных шкал файла исходных данных "Inp_data" расснатриваются как целов  Интерпретация ТХТ-полей принамаю.  Интерпретация ТХТ-полей принамама.  Интерпретация Тут-полей принамама.  Интерпретация Тут-полей принамама.  Интерпретация Тут-полей принамама.  Интерпретация Тут-полей принамама.  Интерпретация ТХТ-тобае.  Интерпретация Тут-полей принамама.  Интерпретация ТХТ-полей принамама.  Интерпретация Тут-полей прин | <ul> <li>Не применять сценарный метод.</li> </ul>          | ACK-анализа                  | С Применить сценарный                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | метод АСК-анализа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Интергретация ТХТ-полей глассов.  Значения полей текстовых кассичикационных шкал файла исходных данных "Inp_dala" рассматриваются как целое  Какие начения ранных чесловых значения (напринер: "I/3-(59873.000000, 178545.6666657)")  (напринер: "I/3-(59873.0000000, 178545.6666657)")  (напринер: "Interesponante чесловые значения и и к начение вами и напринер: "Mиненивление: 1/3-(59873.0000000, 178545.6666657)")  (дариенер: "Mиненивление": "Mineнивление": 1/3-(59873.0000000, 178545.6666657)")  (дариенер: "Mineнивление": "Mineнивление": 1/3-(59873.0000000, 178545.6666657)")  (дариенер: "Mineнивление": 1/3-(59873.000000, 178545.6666657)")  (дариенер: "Mineнивление": 1/3-(59873.000000, 178545.6666657)")  (дариенер: "Mineнивление": "Mineнивление": 1/3-(59873.000000, 178545.6666657)")  (дариенер: "Mineнивление": 1/3-(59873.000000, 178545.6666657)")  (дариене |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Интерпретация ТХТ-полей классов:  Значения полей текстовых классичикационных шкал файла исходных данных "Inp_data" рассматриваются как целое  Кажие маменеювания ГРАДАЦИЙ числовых шкал использовать:  Только интервальные числовые значения  Только интервальные числовые значения  Только интервальные числовые значения  Только интервальные числовые значения  Одк _ Салсе!  Салсе!  Салсе в данных "Inp_data" рассматриваются как целое  (например: "1/3-(59873.0000000, 178545.6666657)")  (например: "Миникальное")  (например: "Миникальное" "Можикальное" "Можикальное" "Можикальное" "Можикальное" "Можикальное" "Можикально | Параци                                                     | TOU MUTEODORETSHING SW       | SVEUNÚ TEVCTODLOV BOSEÚ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inn data''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Значения полей текстовых классичикационных шкал файла исходных данных "Inp_data" рассматриваются как целое  Какие наиченования ГРАДАЦИЙ числовым шкал использовать:  От только интервальные числовые значения и классичений (напричер: "I/3-(59873.0000000, 178545.6666667)")  От интервальные числовые значения, и ик наиченования (напричер: "Muнечальное")  Окоментать шкаль и классичения и классичений (напричер: "Минечальное")  Окоментать шкаль и градаций и классичений и классичени |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND THE CONTRACTOR OF THE CONT |  |  |  |  |  |
| Какие наи-менования ГРАДАЦИЙ числовым шкал использовать:  © Только интервальные числовые значения  Полько интервальные числовые значения  Интринер: "1/3-(59873.000000, 178545.6666667)")  И интервальные числовые значения  В Напринер: "Мини-мальное"]  (напринер: "Мини-мальное")  (на |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Какие извиченования ГРАДАЦИЙ числовых шкал использовать:  © Только интервальные числовые значения (напричер: "1/3-(59873 0000000, 178545 6686667)")  © И интервальные числовые значения, и их наименования (напричер: "Миничальное")  © К Сапсе!  2.3.2.2. Задание размерности модели системы "ЭЙДОС-X++"  ДАНИЕ В ДИАЛОГЕ РАЗМЕРНОСТИ МОДЕЛИ  римарное количество градаций классивикационных и описательных шкал (5 x 50)  классивне градаций классивикационных и классивиля (напричер: "Миничальное клачество (количество (количество (количество классивных радаций клачество)  классивных классивных градаций клачество описательных шкал (5 x 50)  классивных классивных градаций клачество описательных польсательных прадаций количество (количество описательных прадаций количество)  классивных классивных прадаций (количество)  классивных на классивных прадаций (количество)  каконных на классивий интерраций (количество)  каконных на классивий интерраций (количество)  каконных интерраций (количество)  каконных интерраций (количество)  каконных на классивий интерраций (количество)  каконных интерраций (кол |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 2.3.2.2. Задание размерности модели системы "ЭЙДОС-X++"  ДДАНИЕ В ДИАЛОГЕ РАЗМЕРНОСТИ МОДЕЛИ  римарное количество градаций классификационных и описательных шкал: [5 x 50]  НП шкалы Количество Количество Среднее Количество Количество Среднее Количество описательных градаций на описательных бесктовые 1 5 5,00 10 50 5  В бекстовые 0 0 0 0,00 0 10 50 5  Задайте число интервалов (градаций) в шкале: В классификационных шкалах 5 В описательных шкалах 5  Пересчитать шкалы и градации Параметры числ. шкал и градаций Выйти на создание модел 2.3.2.2. Процесс импорта данных из внешней БД "Іпр_data" в систему "ЭЙДОС-X++"  Стадии исполнения процесса //3: Фррмирование классификационных и описательных шкал и градаций на основе ВД "Іпр_data" - Готово 2/3: Генерация обучающей выборки и базы событий "ЕventsКО" на основе внешней БД "Іпр_data" - Готово 3/3: Переиндексация всех баз данных нового приложения - Готово  1РОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения  Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С Только наименования интерваль                            | ных числовых значений (і     | например: "Минимальное")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| АДАНИЕ В ДИАЛОГЕ РАЗМЕРНОСТИ МОДЕЛИ  умичарное количество градаций классификационных и описательных шкал: [5 x 50]  ил шкалы  Количество Количество Среднее  Количество описательных градаций классификационных и классифи градаций классификационных классифи градаций имал описательных градаций имал описательных градаций на описательных градаций на описательных градаций на описательных градаций на описательных имал на описательных шкал на описательных шкалах 5 В описательных шкалах 5  Пересчитать шкалы и градации Параметры числ. шкал и градаций выбти на создание модел 2.3.2.2. Процесс импорта данных из внешней БД "Іпр_data" в систему "ЭЙДОС-Х++"  Стадии исполнения процесса  1/3: Формирование классификационных и описательных шкал и градаций на основе БД "Іпр_data"- Готово 3/3: Перевидя обучающей выборки и базы событий "ЕventsKO" на основе внешней БД "Іпр_data"- Готово 3/3: Перевидексация всех баз данных нового приложения- Готово  ПРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!!  Прогноз времени исполнения  Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>O</u> k <u>C</u> ancel                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| игливарное количество градаций классификационных и описательных шкал: [5 x 50]  игликалы Количество Количество Среднее Количество описательных градаций на опис шкал икал описательных икал описательных градаций на опис шкал икал описательных шкал | 2.3.2.2. Задание размерности мод                           | ели системы "ЭЙДОС-Х++"      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Количество Количество Количество Среднее Количество Количество Среднее Количество Количество Среднее Количество Среднее Количество Описательных Градаций количество Описательных Градаций количество Описательных Градаций имал Описательных Градаций имал Описательных Градаций имал На Описим На Классишкалу Имал На Описим На Описим Описательных Имал На Описательных Имал И Градаций Выйти на Создание Модел Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал И Градаций На Онове ВД "Inp_data" - Готово Описательных Имал Имал Имал Имал Имал Имал Имал Имал                                                                                                                                                                                                                                                              |                                                            |                              | IF. F01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| классифин градаций количество описательных градаций количество имал описательных градаций количество имал описательных градаций имал описательных градаций имал описательных градаций имал описательных градаций имал на описик градаций имал на описик имал на описик имал на описик имал на описик объектовые 0 0 0 0,00 0 10 50 5 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 10 50 5 5 5,00 5 5 5,00 5 5 5,00 5 5 5,00 5 5 5,00 5 5 5,00 5 5 5,00 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Количество Спель                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| кационных классифин градаций шкал описательных градаций икал описательных градаций икал описательных градаций икал описательных градаций икал на опис шкал на оп |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| шкал кационных на классшкалу шкал на описшками на основе БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "ЕventsКО" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово (23: Генерация обучающей БД "Inp_data" - Готово (23: Генерация обучающей БД "Inp_data" - Готово (24: Ген  |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| исловые  1 5 5,00 10 50 55  екстовые 0 0 0,00 0 0 0 0 0  СЕГО: 1 5 5,00 10 50 55  Задайте число интервалов (градаций) в шкале: В классификационных шкалах 5 В описательных шкалах 5  Пересчитать шкалы и градации Параметры числ. шкал и градаций Выйти на создание модел  2.3.2.2. Процесс импорта данных из внешней БД "Inp_data" в систему "ЭЙДОС-Х++"  Стадии исполнения процесса //3: Рорициование классификационных и описательных шкал и градаций на основе БД "Inp_data" - Готово 2/3: Генерация обучающей выборки и базы событий "Events КО" на основе внешней БД "Inp_data" - Готово 3/3: Переиндексация всех баз данных нового приложения - Готово  ТРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения  Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| екстовые 0 0 0 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / DE SOURCE DE                                             |                              | nen monthattades All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STREET, THE PROPERTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| СЕГО: 1 5 5,00 10 50 5  Задайте число интервалов (градаций) в шкале: В классификационных шкалах 5 В описательных шкалах 5  Пересчитать шкалы и градации Параметры числ. шкал и градаций Выйти на создание модел  2.3.2.2. Процесс импорта данных из внешней БД "Inp_data" в систему "ЭЙДОС-Х++"  Стадии исполнения процесса //3: Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data" - Готово 2/3: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data" - Готово 3/3: Переиндексация всех баз данных нового приложения- Готово  ТРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения  Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Задайте число интервалов (градаций) в шкале: В классификационных шкалах  В классификационных шкалах  Тересчитать шкалы и градации  Параметры числ.шкал и градаций  Выйти на создание модел  2.3.2.2. Процесс импорта данных из внешней БД "Inp_data" в систему "ЭЙДОС-Х++"  Стадии исполнения процесса //3: Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data"- Готово 2/3: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data"- Готово 3/3: Переиндексация всех баз данных нового приложения- Готово  ПРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения  Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| В классификационных шкалах 5 В описательных шкалах 5  Пересчитать шкалы и градации Параметры числ.шкал и градаций Выйти на создание модел  2.3.2.2. Процесс импорта данных из внешней БД "Inp_data" в систему "ЭЙДОС-Х++"  Стадии исполнения процесса  1/3. Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data"- Готово 2/3. Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data"- Готово 3/3. Переиндексация всех баз данных нового приложения- Готово  ПРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения  Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                              | 5,00  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 2.3.2.2. Процесс импорта данных из внешней БД "Inp_data" в систему "ЭЙДОС-X++"  Стадии исполнения процесса  1/3: Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data"-Готово  2/3: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data"-Готово  3/3: Переиндексация всех баз данных нового приложения-Готово  1РОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!!  Прогноз времени исполнения  Начало: 05:26:34  Окончание: 5:26:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                              | В описательных шкалах:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Стадии исполнения процесса 1/3: Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data"-Готово 2/3: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data"-Готово 3/3: Переиндексация всех баз данных нового приложения-Готово  ТРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Пересчитать шкалы и градации                               | Параметры числ.шкал и        | градаций                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Выйти на создание модел                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Стадии исполнения процесса— 1/3: Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data"-Готово 2/3: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data"-Готово 3/3: Переиндексация всех баз данных нового приложения-Готово  ПРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения Начало: 05:26:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.2.2. Enguess uniques annual annual a                    | ra pugunua EA "Inp. data" p  | Successive "AMILOC V "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| /3: Формирование классификационных и описательных шкал и градаций на основе БД "Inp_data"-Готово 2/3: Генерация обучающей выборки и базы событий "EventsKO" на основе внешней БД "Inp_data"-Готово 3/3: Переиндексация всех баз данных нового приложения-Готово  ПРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения  Начало: 05:26:34  Окончание: 5:26:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | із внешней од Іпр_аата в с   | систему ЭИДОС-Х++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ПРОЦЕСС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ ЗАВЕРШЕН УСПЕШНО !!! Прогноз времени исполнения Начало: 05:26:34  Окончание: 5:26:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/3: Формирование классифию<br>2/3: Генерация обучающей вы | борки и базы событий "E      | EventsKO" на основе внешн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Прогноз времени исполнения  Начало: 05:26:34  Окончание: 5:26:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | DDE O METUAÑA ACARAI         | ГИ ЗАВЕРШЕН ЯСПЕШНО!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | !!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 100% <u>Q</u> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | прогноз времени исполнения                                 | ПРЕДМЕТНОЙ ОБЛАСТ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | предметной област            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Окончание: 5:26:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

Рисунок 2. Экранные форма программного интерфейса (API) 2.3.2.2 системы «Эйдос» с внешними данными табличного типа<sup>2</sup>

 $<sup>^2</sup>$  Все рисунки в статье приведены с достаточно высоким разрешением и при увеличении масштаба просмотра вполне читабельны

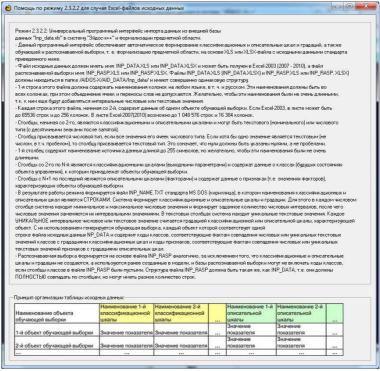



Рисунок 3. Экранные форма HELP программного интерфейса (API) 2.3.2.2

В результате работы режима сформировано классификационная шкалы с суммарным количеством градаций (классов) 5 (таблица 2) и 10 описательных шкал с суммарным числом градаций 50 (таблица 3, рисунок 4).

Таблица 2 – Классификационные шкалы и градации (субъективные сомелье-ценки оценки качества вина)

| KOD_CLS | NAME_CLS                             |
|---------|--------------------------------------|
| 1       | QUALITY-1/5-{8.4000000, 9.5000000}   |
| 2       | QUALITY-2/5-{9.5000000, 9.9000000}   |
| 3       | QUALITY-3/5-{9.9000000, 10.5000000}  |
| 4       | QUALITY-4/5-{10.5000000, 11.3000000} |
| 5       | QUALITY-5/5-{11.3000000, 14.9000000} |

Таблица 3 – Описательные шкалы и градации (объективные физико-химические свойства вина)

| KOD_ATR | NAME_ATR                                     |
|---------|----------------------------------------------|
| 1       | VOLATILE ACIDITY-1/5-{4.6000000, 7.0000000}  |
| 2       | VOLATILE ACIDITY-2/5-{7.0000000, 7.6000000}  |
| 3       | VOLATILE ACIDITY-3/5-{7.6000000, 8.3000000}  |
| 4       | VOLATILE ACIDITY-4/5-{8.3000000, 9.7000000}  |
| 5       | VOLATILE ACIDITY-5/5-{9.7000000, 15.9000000} |
| 6       | CITRIC ACID-1/5-{0.1200000, 0.3700000}       |
| 7       | CITRIC ACID-2/5-{0.3700000, 0.4700000}       |
| 8       | CITRIC ACID-3/5-{0.4700000, 0.5700000}       |
| 9       | CITRIC ACID-4/5-{0.5700000, 0.6600000}       |
| 10      | CITRIC ACID-5/5-{0.6600000, 1.5800000}       |
| 11      | RESIDUAL SUGAR-1/5-{0.0000000, 0.0700000}    |
| 12      | RESIDUAL SUGAR-2/5-{0.0700000, 0.2100000}    |
| 13      | RESIDUAL SUGAR-3/5-{0.2100000, 0.3200000}    |
| 14      | RESIDUAL SUGAR-4/5-{0.3200000, 0.4600000}    |
| 15      | RESIDUAL SUGAR-5/5-{0.4600000, 1.00000000}   |
| 16      | CHLORIDES-1/5-{0.9000000, 1.8000000}         |
| 17      | CHLORIDES-2/5-{1.8000000, 2.1000000}         |
| 18      | CHLORIDES-3/5-{2.1000000, 2.3000000}         |
| 19      | CHLORIDES-4/5-{2.3000000, 2.7000000}         |

| 20 | CHLORIDES-5/5-{2.7000000, 15.5000000}              |
|----|----------------------------------------------------|
| 21 | FREE SULFUR DIOXIDE-1/5-{0.0120000, 0.0670000}     |
| 22 | FREE SULFUR DIOXIDE-2/5-{0.0670000, 0.0760000}     |
| 23 | FREE SULFUR DIOXIDE-3/5-{0.0760000, 0.0820000}     |
| 24 | FREE SULFUR DIOXIDE-4/5-{0.0820000, 0.0940000}     |
| 25 | FREE SULFUR DIOXIDE-5/5-{0.0940000, 0.6110000}     |
| 26 | TOTAL SULFUR DIOXIDE-1/5-{1.0000000, 6.0000000}    |
| 27 | TOTAL SULFUR DIOXIDE-2/5-{6.0000000, 11.00000000}  |
| 28 | TOTAL SULFUR DIOXIDE-3/5-{11.0000000, 16.00000000} |
| 29 | TOTAL SULFUR DIOXIDE-4/5-{16.0000000, 24.00000000} |
| 30 | TOTAL SULFUR DIOXIDE-5/5-{24.0000000, 72.00000000} |
| 31 | DENSITY-1/5-{6.0000000, 19.0000000}                |
| 32 | DENSITY-2/5-{19.0000000, 30.0000000}               |
| 33 | DENSITY-3/5-{30.0000000, 45.0000000}               |
| 34 | DENSITY-4/5-{45.0000000, 69.0000000}               |
| 35 | DENSITY-5/5-{69.0000000, 289.0000000}              |
| 36 | PH-1/5-{0.9900700, 0.9953400}                      |
| 37 | PH-2/5-{0.9953400, 0.9963000}                      |
| 38 | PH-3/5-{0.9963000, 0.9971400}                      |
| 39 | PH-4/5-{0.9971400, 0.9981700}                      |
| 40 | PH-5/5-{0.9981700, 1.0036900}                      |
| 41 | SULPHATES-1/5-{2.7400000, 3.1800000}               |
| 42 | SULPHATES-2/5-{3.1800000, 3.2800000}               |
| 43 | SULPHATES-3/5-{3.2800000, 3.3500000}               |
| 44 | SULPHATES-4/5-{3.3500000, 3.4200000}               |
| 45 | SULPHATES-5/5-{3.4200000, 4.0100000}               |
| 46 | ALCOHOL-1/5-{0.3300000, 0.5400000}                 |
| 47 | ALCOHOL-2/5-{0.5400000, 0.5900000}                 |
| 48 | ALCOHOL-3/5-{0.5900000, 0.6500000}                 |
| 49 | ALCOHOL-4/5-{0.6500000, 0.7600000}                 |
| 50 | ALCOHOL-5/5-{0.7600000, 2.0000000}                 |

```
| PROMETER MACE IN TORQUINGER CONTYNIATION INCLUSION OF CONTROLL AND C
```

Рисунок 4. Классификационные и описательные шкалы и градации

С использованием классификационных и описательных шкал и градаций исходные данные были закодированы и получена обучающая

выборка (рисунок 5):

|    | Наименование<br>объекта |   | 2.<br>VOLATILE<br>ACIDITY | 3.<br>ELTRIC<br>ACID | 4.<br>RESIDUAL<br>SUGAR |    | E.<br>FREE<br>SULFUR<br>DIOXIDE | 7.<br>TOTAL<br>SULFUR<br>DIOXIDE |    |    |    |    |
|----|-------------------------|---|---------------------------|----------------------|-------------------------|----|---------------------------------|----------------------------------|----|----|----|----|
| 1  | 1                       | 1 | 2                         | 10                   | 11                      | 17 | 22                              | 27                               | 33 | 39 | 45 | 47 |
| 2  | 2                       | 2 | 3                         | 10                   | 11                      | 19 | 25                              | 30                               | 34 | 38 | 42 | 49 |
| 3  | 3                       | 2 | 3                         | 10                   | 11                      | 18 | 24                              | 28                               | 34 | 38 | 42 | 48 |
| 4  | 4                       | 2 | 5                         | 6                    | 15                      | 17 | 22                              | 29                               | 34 | 39 | 41 | 47 |
| 5  | 5                       | 1 | 2                         | 10                   | 11                      | 17 | 22                              | 27                               | 33 | 39 | 45 | 47 |
| 6  | 6                       | 1 | 2                         | 9                    | 11                      | 16 | 22                              | 28                               | 33 | 39 | 45 | 47 |
| 7  | 7                       | 1 | 3                         | 9                    | 11                      | 16 | 22                              | 28                               | 34 | 38 | 43 | 46 |
| 8  | 8                       | 3 | 2                         | 9                    | 11                      | 16 | 21                              | 28                               | 32 | 36 | 44 | 46 |
| 9  | 9                       | 1 | 3                         | 9                    | 11                      | 17 | 22                              | 27                               | 31 | 38 | 44 | 47 |
| 10 | 10                      | 3 | 2                         | 8                    | 14                      | 20 | 22                              | 29                               | 35 | 39 | 43 | 50 |
| 11 | 11                      | 1 | 1                         | 9                    | 12                      | 16 | 25                              | 28                               | 34 | 37 | 42 | 46 |
| 12 | 12                      | 3 | 2                         | 8                    | 14                      | 20 | 22                              | 29                               | 35 | 39 | 43 | 50 |
| 13 | 13                      | 2 | 1                         | 9                    | 11                      | 16 | 24                              | 28                               | 34 | 36 | 45 | 46 |
|    | 14                      | 1 | 3                         | 9                    | 1.3                     | 16 | 25                              | 27                               | 32 | 39 | 42 | 50 |
|    |                         |   |                           |                      |                         |    |                                 |                                  |    |    |    |    |

Рисунок 5. Обучающая выборка (фрагмент)

Обучающая выборка по сути представляет собой нормализованные исходные данные, т.е. таблицу исходных данных (таблица 1), закодированную с помощью классификационных и описательных шкал и градаций (таблицы 2 и 3).

Номера колонок в обучающей выборке (внизу) совпадают с номерами колонок в таблице 1.

Таким образом созданы все необходимые и достаточные условия для выполнения следующего этапа АСК-анализа: т.е. для синтеза и верификации моделей.

# Задача 3: синтез и верификация статистических и системно-когнитивных моделей и выбор наиболее достоверной модели

Синтез и верификация моделей осуществляется в режиме 3.5 системы «Эйдос» (рисунок 6).

Обратим внимание на то, что на рисунке 6 в правом нижнем углу окна задана опция: «Расчеты проводить на графическом процессор (GPU)».

Стадия процесса исполнения синтеза и верификации моделей и прогноз времени его окончания отображается на экранной форме (рисунок 7).

Из рисунка 7 видно, что весь процесс синтеза и верификации моделей занял 1 минуту 42 секунды. Отметим, что при синтезе и верификации моделей использовался графический процессор (GPU) видеокарты. На центральном процессоре (CPU) выполнение этих операций занимает значительно большее время (на некоторых задачах это происходит в десятки, сотни и даже тысячи раз дольше). Таким образом, неграфические вычисления на графических процессорах видеокарты делает возможной обработку больших объемов исходных данных за

разумное время. В процесс синтеза и верификации моделей осуществляется также расчет 10 выходных форм, на что уходит более 99% времени исполнения.

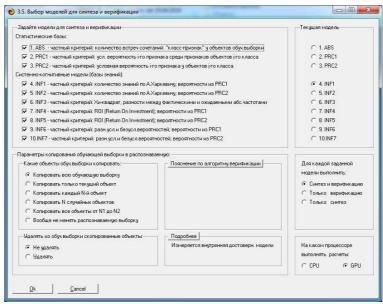



Рисунок 6. Экранная форма режима синтеза и верификации статистических и системно-когнитивных моделей системы «Эйдос»

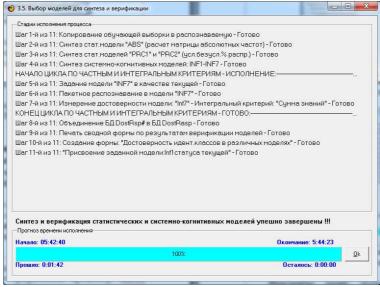



Рисунок 7. Экранная форма с отображением стадии процесса исполнения синтеза и верификации моделей и прогноза времени его окончания

Фрагменты самих созданных статистических и системно-когнитивных моделей (СК-модели) приведены на рисунках 8, 9, 10:

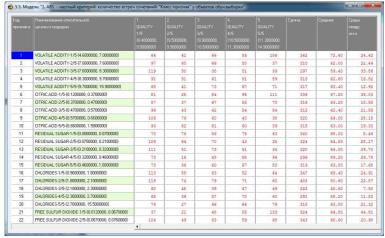



Рисунок 8. Матрица абсолютных частот (фрагмент)

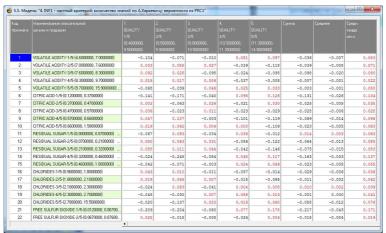



Рисунок 9. Матрица информативностей INF1 (фрагмент)

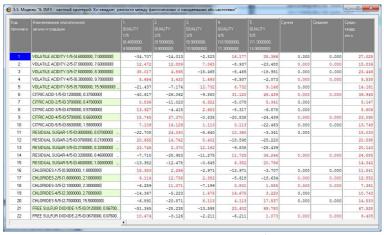



Рисунок 10. Модель INF3 (фрагмент)

Отметим, что в АСК-анализе и СК-моделях степень выраженности различных физико-химических свойств вина рассматривается с одной единственной точки зрения: какое *количество информации* содержится в них о том, какую оценку качества даст этому вину сомелье [5]. Поэтому не играет никакой роли в каких единицах измерения измеряются те или иные

физико-химические свойства вина, а также в каких единицах измерения дает оценку качества вина сомелье [5]. Это решение проблемы сопоставимости в АСК-анализе и системе «Эйдос», отличающее их от других интеллектуальных технологий.

#### Верификация статистических и системно-когнитивных моделей

Отметим, что для исследования достоверности мы используем СК-модели с 5 адаптивными градациями классификационной шкалы и 50 адаптивными градациями в описательных шкалах, т.к. при таком варианте типа и числа градаций результаты более наглядные, чем при других (из исследованных).

Оценка достоверности моделей в системе «Эйдос» осуществляется путем решения задачи классификации объектов обучающей выборки по обобщенным образам классов и подсчета количества истинных положительных и отрицательных, а также ложных положительных и отрицательных решений по F-мере Ван Ризбергена, а также по критериям L1- L2-мерам проф.Е.В.Луценко, смягчающие и преодолевающие недостатки F-меры [6]. В режиме 3.4 системы «Эйдос» изучается достоверность каждой частной модели в соответствии с этими мерами достоверности (рисунок 11).

|                                                               |                               |       |             |             |               |             | модели |       |       | уровней сходс | уровней сходс   |         |
|---------------------------------------------------------------|-------------------------------|-------|-------------|-------------|---------------|-------------|--------|-------|-------|---------------|-----------------|---------|
|                                                               |                               |       |             |             |               |             |        |       |       |               | истино-отрицат. |         |
| _                                                             |                               |       | решений (ST | решений (ST | решений (SFP) | решений (SF |        |       |       | решений       | решений         | решений |
| BS - частный критерий: количество встреч сочетаний: "клас     | Корреляция абс.частот с обр   | 0.462 | 383.779     | 621.964     | 500.468       | 25.377      | 0.434  | 0.938 | 0.593 | 0.287         | 0.175           | 0.176   |
| BS - частный критерий; количество встреч сочетаний; "клас     | Сумма абс.частот по признак   | 0.333 | 973.331     |             | 3170.283      |             | 0.235  | 1.000 | 0.380 | 0.609         |                 | 0.496   |
| RC1 - частный критерий: усл. вероятность i-го признака сред   | Корреляция усл.отн.частот с о | 0.462 | 383.779     | 621.964     | 500.468       | 25.377      | 0.434  | 0.938 | 0.593 | 0.288         | 0.175           | 0.176   |
| RC1 - частный критерий: усл. вероятность i-го признака сред   | Сумма усл.отн.частот по приз  | 0.333 | 956.268     |             | 3268.952      |             | 0.226  | 1.000 | 0.369 | 0.598         |                 | 0.511   |
| RC2 - частный критерий: условная вероятность i-го признака    | Корреляция усл.отн.частот с о | 0.461 | 383.779     | 621.964     | 500.468       | 25.377      | 0.434  | 0.938 | 0.593 | 0.288         | 0.175           | 0.176   |
| RC2 - частный критерий: условная вероятность i-го признака    | Сумма усл.отн.частот по приз  | 0.333 | 956.268     |             | 3268.952      |             | 0.226  | 1.000 | 0.369 | 0.598         |                 | 0.511   |
| IF1 - частный критерий; количество знаний по А.Харкевичу; в   | Семантический резонанс зна    | 0.469 | 394.649     | 870.733     | 501.495       | 26.283      | 0.440  | 0.938 | 0.599 | 0.287         | 0.248           | 0.174   |
| IF1 - частный критерий: количество знаний по А.Харкевичу; в   | Сумма знаний                  | 0.512 | 197.115     | 1139.876    | 180.110       | 52.016      | 0.523  | 0.791 | 0.629 | 0.172         | 0.244           | 0.104   |
| IF2 - частный критерий: количество знаний по А.Харкевичу; в   | Семантический резонанс зна    | 0.469 | 394.649     | 870.733     | 501.495       | 26.283      | 0.440  | 0.938 | 0.599 | 0.287         | 0.248           | 0.174   |
| IF2 - частный критерий: количество знаний по А.Харкевичу; в., | Сумма знаний                  | 0.512 | 197.115     | 1139.876    | 180.110       | 52.016      | 0.523  | 0.791 | 0.629 | 0.172         | 0.244           | 0.104   |
| IF3 - частный критерий: Хи-квадрат, разности между фактич     | Семантический резонанс зна    | 0.482 | 401.451     | 822.351     | 463.696       | 34.259      | 0.464  | 0.921 | 0.617 | 0.303         | 0.215           | 0.181   |
| 4F3 - частный критерий: Хи-квадрат, разности между фактич     | Сумма знаний                  | 0.482 | 293.289     | 562.863     | 291.637       | 22.063      | 0.501  | 0.930 | 0.652 | 0.222         | 0.147           | 0.114   |
| IF4 - частный критерий: ROI (Return On Investment); вероятно  | Семантический резонанс зна    | 0.480 | 406.976     | 832.207     | 465.203       | 34.400      | 0.467  | 0.922 | 0.620 | 0.308         | 0.218           | 0.180   |
| IF4 - частный кригерий: ROI (Return On Investment); вероятно  | Сумма знаний                  | 0.481 | 281.991     | 554.383     | 292.996       | 20.604      | 0.490  | 0.932 | 0.643 | 0.214         | 0.145           | 0.114   |
| IF5 - частный критерий: ROI (Return On Investment); вероятно  | Семантический резонанс зна    | 0.480 | 406.976     | 832.207     | 465.203       | 34.400      | 0.467  | 0.922 | 0.620 | 0.308         | 0.218           | 0.180   |
| IF5 - частный критерий: ROI (Return On Investment); вероятно  | Сумма знаний                  | 0.481 | 281.991     | 554.383     | 292.996       | 20.604      | 0.490  | 0.932 | 0.643 | 0.214         | 0.145           | 0.114   |
| IF6 - частный критерий: разн.усл.и безусл.вероятностей; вер   | Семантический резонанс зна    | 0.482 | 401.451     | 822.351     | 463.696       | 34.259      | 0.464  | 0.921 | 0.617 | 0.303         | 0.215           | 0.181   |
| IF6 - частный критерий: разн.усл.и безусл.вероятностей; вер   | Сумма знаний                  | 0.482 | 277.888     | 548.647     | 293.622       | 20.422      | 0.486  | 0.932 | 0.639 | 0.210         | 0.143           | 0.114   |
| NF7 - частный критерий: разн.усл.и безусл.вероятностей; ве    | Семантический резонанс зна    | 0.482 | 401.451     | 822.351     | 463.696       | 34.259      | 0.464  | 0.921 | 0.617 | 0.303         | 0.215           | 0.181   |
| NF7 - частный критерий: разн.усл.и безусл.вероятностей; ве    | Сумма знаний                  | 0.482 | 277.888     | 548.647     | 293.622       | 20.422      | 0.486  | 0.932 | 0.639 | 0.210         | 0.143           | 0.114   |
|                                                               |                               | 4     |             |             | 2             |             |        |       |       |               |                 |         |

Рисунок 11. Экранная форма с информацией о достоверности моделей по F-критерию Ван Ризбергена и L1- и L2-критериям проф.Е.В.Луценко [34]

Из рисунка 10 мы видим, что в данном интеллектуальном приложении по F-критерию Ван Ризбергена наиболее достоверной (F=0,626 при максимуме 1,000) является модель INF1 с интегральным критерием «Сумма знаний» (критерий L1 для этой модели имеет значение 0,771), что подтверждает наличие зависимости субъективных сомелье-оценок качества вина от его объективных физико-химических свойств. Однако сами значения F- и L1 критериев достоверности моделей говорят о том, что эта зависимость эта не очень сильная.

Отметим, что различные классы по качеству вина прогнозируются с разной достоверностью в разных моделях (т.е. с разными частными критериями) и с разными интегральными критериями (таблица 4):

Таблица 4 – Достоверность идентификации качества вина по F-критерию

в разных моделях и с разными интегральными критериями

| Код класса                                          | 1                           | 2                           | 3                            | 4                             | 5                             |                       |
|-----------------------------------------------------|-----------------------------|-----------------------------|------------------------------|-------------------------------|-------------------------------|-----------------------|
| Наименование<br>класса                              | QUALITY-1/5-<br>{8.40,9.50} | QUALITY-2/5-<br>{9.50,9.90} | QUALITY-3/5-<br>{9.90,10.50} | QUALITY-4/5-<br>{10.50,11.30} | QUALITY-5/5-<br>{11.30,14.90} | Средневзве-<br>шенное |
| Максимальная<br>достоверность                       | 0,701                       | 0,517                       | 0,574                        | 0,601                         | 0,721                         | 0,626                 |
| Модель с<br>максимальной<br>достоверностью          | INF1                        | INF1                        | INF1                         | INF1                          | INF1                          | INF1                  |
| Интегральный критерий с максимальной достоверностью | Сумма                       | Сумма                       | Сумма                        | Сумма                         | Сумма                         | Сумма                 |
| ABSK                                                | 0,448                       | 0,283                       | 0,332                        | 0,341                         | 0,368                         | 0,356                 |
| PRC1K                                               | 0,448                       | 0,283                       | 0,332                        | 0,341                         | 0,368                         | 0,356                 |
| PRC2K                                               | 0,448                       | 0,283                       | 0,332                        | 0,341                         | 0,368                         | 0,356                 |
| INF1K                                               | 0,619                       | 0,430                       | 0,482                        | 0,540                         | 0,617                         | 0,539                 |
| INF2K                                               | 0,619                       | 0,430                       | 0,482                        | 0,540                         | 0,617                         | 0,539                 |
| INF3K                                               | 0,632                       | 0,421                       | 0,492                        | 0,529                         | 0,620                         | 0,540                 |
| INF4K                                               | 0,643                       | 0,455                       | 0,516                        | 0,541                         | 0,632                         | 0,560                 |
| INF5K                                               | 0,643                       | 0,455                       | 0,516                        | 0,541                         | 0,632                         | 0,560                 |
| INF6K                                               | 0,630                       | 0,408                       | 0,502                        | 0,528                         | 0,611                         | 0,537                 |
| INF7K                                               | 0,630                       | 0,408                       | 0,502                        | 0,528                         | 0,611                         | 0,537                 |
| ABSI                                                | 0,429                       | 0,264                       | 0,319                        | 0,319                         | 0,327                         | 0,333                 |
| PRC1I                                               | 0,429                       | 0,264                       | 0,319                        | 0,319                         | 0,327                         | 0,333                 |
| PRC2I                                               | 0,429                       | 0,264                       | 0,319                        | 0,319                         | 0,327                         | 0,333                 |
| INF1I                                               | 0,701                       | 0,517                       | 0,574                        | 0,601                         | 0,721                         | 0,626                 |
| INF2I                                               | 0,701                       | 0,517                       | 0,574                        | 0,601                         | 0,721                         | 0,626                 |
| INF3I                                               | 0,632                       | 0,421                       | 0,492                        | 0,529                         | 0,620                         | 0,540                 |
| INF4I                                               | 0,643                       | 0,414                       | 0,498                        | 0,520                         | 0,597                         | 0,536                 |
| INF5I                                               | 0,643                       | 0,414                       | 0,498                        | 0,520                         | 0,597                         | 0,536                 |
| INF6I                                               | 0,621                       | 0,380                       | 0,486                        | 0,516                         | 0,600                         | 0,519                 |
| INF7I                                               | 0,621                       | 0,380                       | 0,486                        | 0,516                         | 0,600                         | 0,519                 |

#### Из таблицы 4 видно, что:

- по F-критерию наиболее достоверной при идентификации со всеми классами является модель INF1 с интегральным критерием «Сумма знаний»:
- с достоверностью выше средневзвешенной идентифицируются классы с *максимальным* и *минимальным* качеством вина, а ниже средневзвешенной классы со средним качеством вина, а также ниже и выше среднего (средневзвешенная достоверность является очевидной, естественной и обоснованной базой сравнения).

По сути это означает, что сомелье наиболее четко различают только очень хорошее и откровенно плохое вино, а с винами среднего качества они чаще расходятся (путаются) в оценках (т.е. едва различают вина ниже среднего, среднего и выше среднего качества).

Это позволяет обоснованно предположить, что субъективные сомелье-оценки качества вина менее достоверны, чем оценки, основанные на технологиях искусственного интеллекта и объективных физико-химических свойствах вина. Иначе говоря, учитывая точность сомелье-

оценок, можно предположить, что даже 5 градаций качества вина для них это слишком много, и вполне можно было бы ограничиться 3 или даже 2 градациями. Сейчас же используется шкала, в которой 100 (!) градаций, что, конечно, очень сильно переоценивает возможности сомелье и может рассматриваться не как объективная оценка их возможностей, а скорее как большой им комплемент и аванс, а вероятнее просто маркетинговым ходом. А вот для объективной оценки физико-химических свойств вина использование 50 или даже 100 градаций (при достаточно большом объеме выборки) вполне оправдано и обоснованно.

На рисунке 12 приведены частотные распределения числа истинных и ложных положительных и отрицательных решений и их разности, по результатам прогнозирования субъективных сомелье-оценок качества вина на основе его объективных физико-химических свойств в СК-модели INF1 по данным обучающей выборки, включающей 1599 наблюдений.

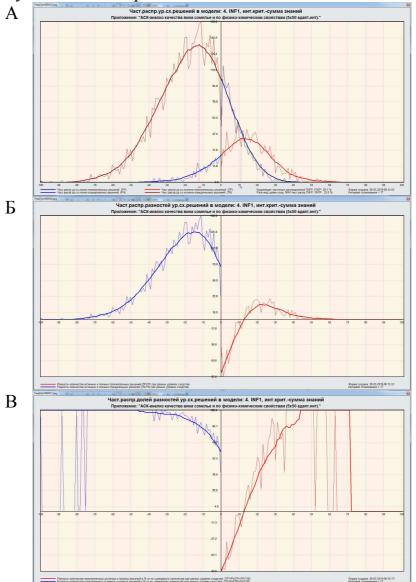



Рисунок 12. Частотные распределения числа истинных и ложных положительных и отрицательных решений и их разности в СК-модели Inf1

Рисунок 12-А содержит изображения двух частотных распределений, очень похожих на нормальные, сдвинутых относительно друг друга по фазе. Левое, большее по амплитуде включает истинно-отрицательные и ложно-положительные решения, а правое, меньшее по амплитуде, включает ложные отрицательные и истинно-положительные решения. Сдвиг этих распределений относительно друг друга и другие различия между ними и позволяют решать задачу идентификации. Видно, что для отрицательных решений количество истинных решений значительно превосходит количество ложных решений, причем при уровнях различия больше примерно 40% ложные отрицательные решения вообще отсутствуют. Видно также, что для положительных решений картина более сложная и включает 3 диапазона уровней сходства 1) при уровнях сходства от 0% до примерно 14% количество ложных решений больше числа истинных; 2) при уровнях сходства от 14% до примерно 44% есть и истинные и ложные положительные решения, но число истинных больше числа ложных; 3) при уровнях сходства выше 44% встречаются только истинные решения.

Из рисунка 12-В видно, что чем выше уровень сходства, тем больше доля истинных решений; при уровнях сходства выше примерно 14% число истинных решений превосходит число ложных решений (это видно также и из рисунка 12-Б).

На рисунке 13 приведен Help по режиму 3.4, в котором описаны меры достоверности моделей, применяемые в системе «Эйдос»:

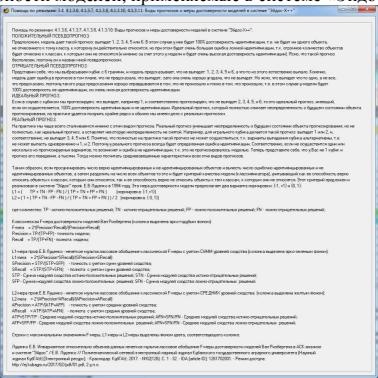



Рисунок 13. Экранная форма с информацией о достоверности моделей по F-критерию Ван Ризбергена и L1- и L2-критериям проф.Е.В.Луценко [6]

### Выбор наиболее достоверной модели и присвоение ей статуса текущей

В соответствии со схемой обработки данных, информации и знаний в системе «Эйдос» (рисунок 1), присвоим СК-модели INF1 статус текущей модели. Для это запустим режим 5.6 с параметрами, приведенными на экранной форме (рисунок 14):

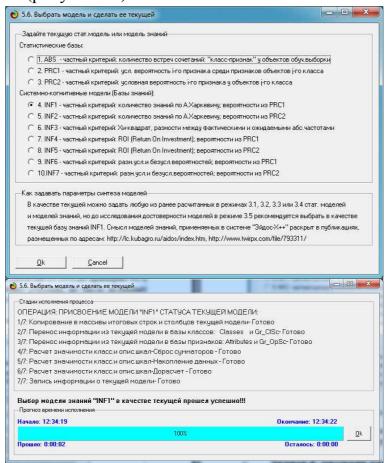



Рисунок 14. Экранные формы придания наиболее достоверной по L2-критерию СК-модели Inf4 статуса текущей модели

### Задача 4: решение различных задач в наиболее достоверной модели

### Подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация)

Решим задачу прогнозирования обучающей выборки в наиболее достоверной СК-модели INF1 на GPU. Для этого запустим режим 4.1.2 (рисунок 15).

Из рисунка 15 видно, что идентификация 1599 наблюдений заняло 8 секунд.

Отметим, что 99,999% этого времени заняло не само прогнозирование на GPU, а создание 10 выходных форм на основе результатов этого прогнозирования. Эти формы отражают результаты прогнозирования в различных разрезах и обобщениях:

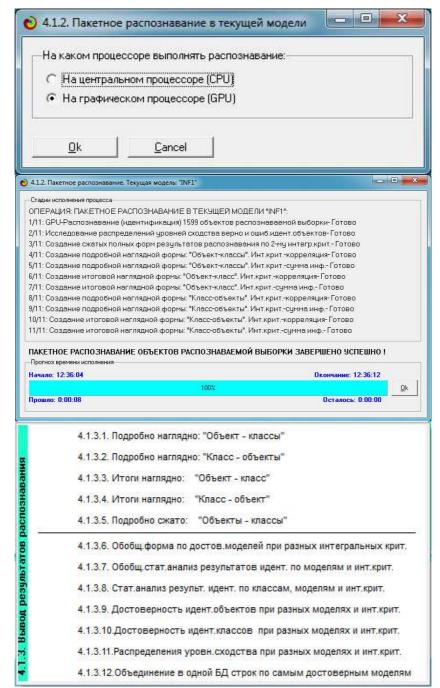



Рисунок 15. Экранные формы отображения процесса решения задачи прогнозирования в текущей модели

Приведем две из этих 10 форм: 4.1.3.1 и 4.1.3.2 (рисунок 16).

Символ «√» стоит против тех результатов прогнозирования, которые подтвердились на опыте, т.е. соответствуют факту. Из рисунка 15 видно, что результаты прогнозирования являются очень хорошими, естественно при учете информации из рисунка 12-Б о том, что достоверные прогнозы в данной модели имеют уровень сходства выше 14%, т.е. по сути прогнозы с более низки уровнем сходства надо просто игнорировать.

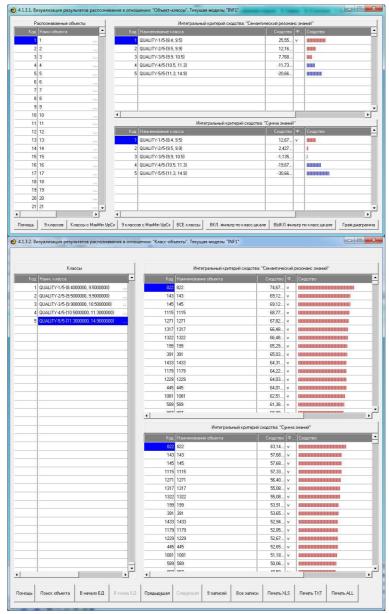




Рисунок 16. Выходные формы по результатам идентификации качества вина на основе его физико-химических свойств

### Подзадача 4.2. Поддержка принятия решений (SWOT-анализ)

При принятии решений определяется сила и направление влияния факторов на принадлежность состояний объекта моделирования к тем или иным классам, соответствующим различным будущим состояниям. По сути это решение задачи SWOT-анализа [7]. Применительно к задаче, решаемой в данной работе, SWOT-анализ показывает степень влияния различных значений физико-химических свойств вина на его принадлежность к различным классам по качеству с точки зрения сомелье.

В системе «Эйдос» в режиме 4.4.8 поддерживается решение этой задачи. При этом *выявляется система детерминации заданного класса*, т.е. система значений факторов, обуславливающих переход объекта

моделирования и управления в состояние, соответствующее данному классу (рисунки 17).



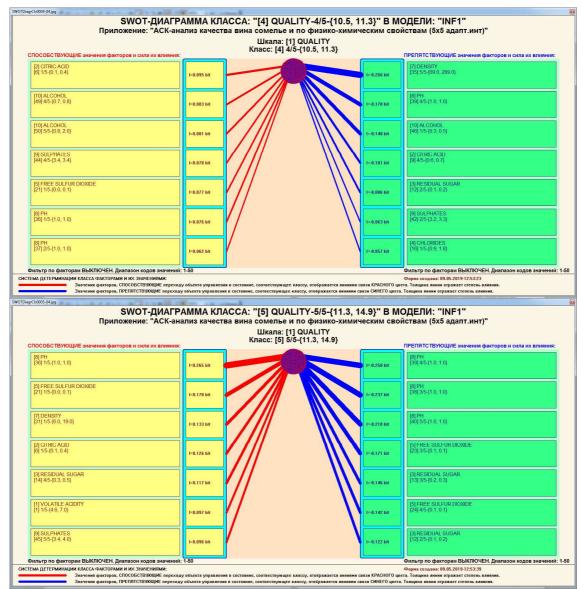
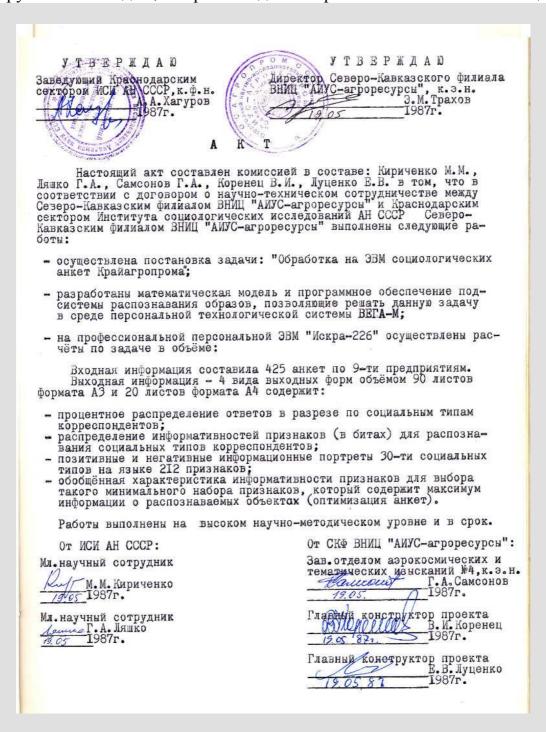




Рисунок 17. SWOT-диаграммы, отражающие степень влияния различных значений физико-химических свойств вина на его принадлежность к различным классам по качеству

Выходные формы, приведенные на рисунках 17, как говорят «интуитивно понятны», т.е. не требуют особых комментариев. Отметим лишь, что информация быть приведена не только в приведенных, но и во многих других табличных и графических формах, которые в данной работе не приводятся только из-за ограниченности ее размера. В частности в этих формах может быть выведена значительно более полная информация (в т.ч. вообще вся имеющая в модели). Подобная подробная информация содержится в базах данных, расположенных по пути: c:\Aidos-X\AID\_DATA\A0000003\System\SWOTCls###Inf1.DBF, где: «###» – код класса с ведущими нулями. Эти базы открываются в MS Excel.

Отметим также, что система «Эйдос» обеспечивала решение этой *всегда*, т.е. даже в самых ранних DOS-версиях и в реализациях системы

«Эйдос» на других языках и типах компьютеров. Например, первый акт внедрения системы «Эйдос», где об этом упоминается в явном виде, датируется 1987 годом, а первый подобный расчет относится к 1981 году.



Но тогда SWOT-диаграммы назывались позитивным и негативным информационными портретами классов.

На рисунке 18 приведены примеры инвертированных SWOTдиаграмм, отражающих влияние заданных значений физико-химических свойств вина на сомелье-оценку его качества:

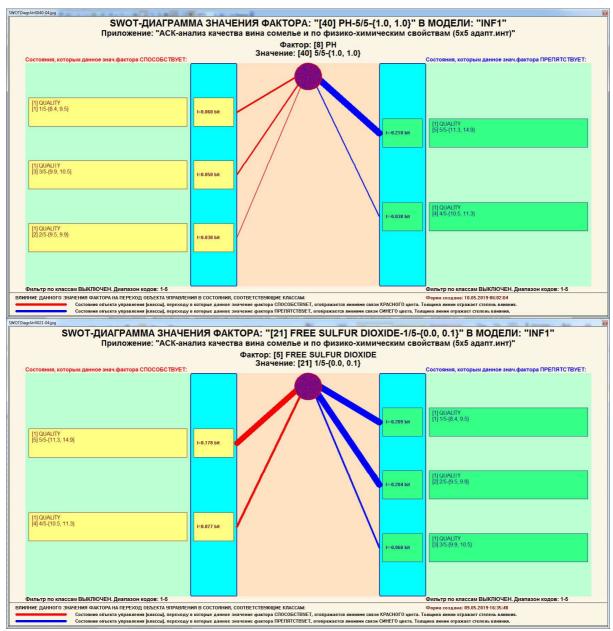



Рисунок 18. Примеры инвертированных SWOT-диаграмм, отражающих влияние заданных значений физико-химических свойств вина на сомелье-оценку его качества

Из рисунка 18 видно, что кислые вина сомелье оценивают как вина низкого и среднего качества, а вина с низким содержанием свободного диоксида серы, как вина высокого качества.

В заключение отметим, что SWOT-анализ является широко известным и общепризнанным метод стратегического планирования. Однако это не мешает тому, что он подвергается критике, часто вполне справедливой, обоснованной и хорошо аргументированной. В результате критического рассмотрения SWOT-анализа выявлено довольно много его слабых сторон (недостатков), источником которых чаще всего является необходимость привлечения экспертов, в частности для оценки силы и направления влияния факторов. Ясно, что эксперты это делают

неформализуемым путем (интуитивно), на основе своего опыта и профессиональной компетенции. Но возможности экспертов имеют свои ограничения и часто по различным причинам они не могут и не хотят это сделать. Таким образом, возникает проблема проведения SWOT-анализа без привлечения экспертов. Эта проблема может решаться путем автоматизации функций экспертов, т.е. путем измерения силы и направления влияния факторов непосредственно на основе эмпирических данных. Подобная технология разработана давно, ей уже более 30 лет, но она малоизвестна – это интеллектуальная система «Эйдос» [6].

### Подзадача 4.3. Исследование моделируемой предметной области путем исследования ее модели

Если модель предметной области достоверна, то исследование модели можно считать исследованием самого моделируемого объекта, т.е. результаты исследования модели корректно относить к самому объекту моделирования, «переносить на него».

В системе «Эйдос» есть довольно много возможностей для такого исследования, но в данной работе из-за ограничений на ее объем мы рассмотрим лишь результаты кластерно-конструктивного анализа классов и признаков (когнитивные диаграммы и дендрограммы), а также нелокальные нейроны, нелокальные нейронные сети, 3d-интегральные когнитивные карты и когнитивные функции.

#### 4.3.1. Когнитивные диаграммы классов

Эти диаграммы отражают сходство/различие классов. Мы получаем их в режимах 4.2.2.1 и 4.2.2.2 (рисунок 19):

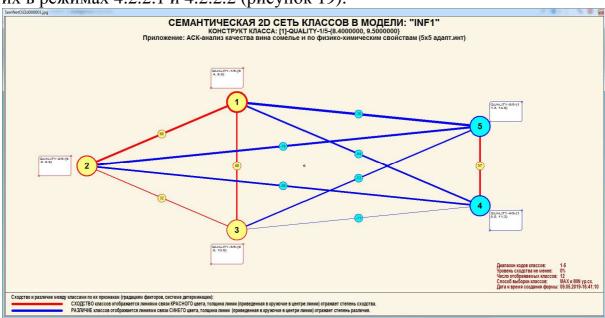



Рисунок 19. Когнитивная диаграмма классов

Отметим также, что на когнитивной диаграмме, приведенной на рисунке 19, показаны *количественные* оценки сходства/различия

различных опасных природно-климатических явлений, полученные с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

В системе «Эйлос» есть возможность управлять параметрами формирования и вывода изображения, приведенного на рисунке 19. Для этого используется диалоговое окно, приведенное на рисунке 20.

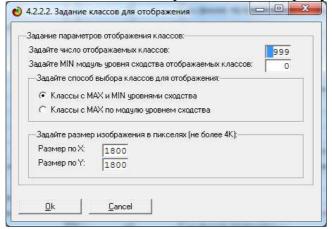



Рисунок 20. Диалоговое окно управления параметрами формирования и вывода изображения когнитивной диаграммы классов

#### 4.3.2. Агломеративная когнитивная кластеризация классов

Информация о сходстве/различии классов, содержащаяся в матрице сходства, может быть визуализирована не только в форме, когнитивных диаграмм, пример которой приведен на рисунке 18, но и в форме агломеративных дендрограмм, полученных в результате когнитивной кластеризации [8] (рисунок 21):

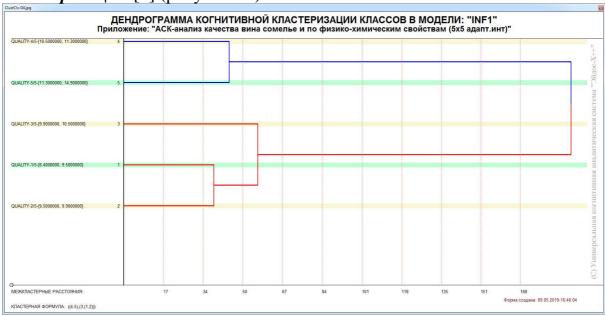



Рисунок 21. Дендрограмма когнитивной агломеративной кластеризации классов по качеству вина

Из рисунка 21 мы видим, что некоторые классы качества вина значений физико-химических свойств. сходны системе следовательно, могут наблюдаться одновременно, а другие по этой свойств сильно отличаются, и. следовательно, взаимоисключающими, Из T.e. альтернативными. дендрограммы когнитивной агломеративной кластеризации классов, приведенной на рисунке 21, мы видим также, что все классы качества вина образуют два противоположных по системе значений физико-химических свойств кластера, являющихся полюсами конструкта: в верхнем кластере собраны классы с высоким и очень высоким качеством вина, а в нижнем - с очень низким, низким и средним качеством вина.

На рисунке 22 мы видим график изменения межкластерных расстояний:

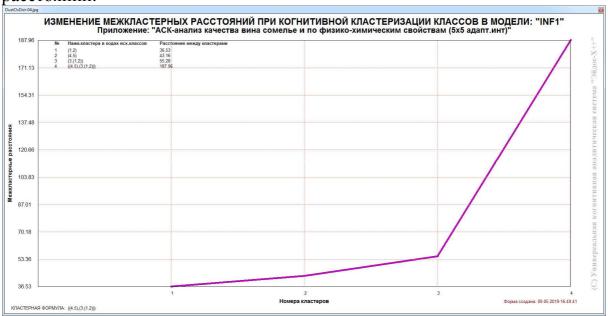



Рисунок 22. График изменения межкластерных расстояний

#### 4.3.3. Когнитивные диаграммы значений факторов

Эти диаграммы отражают сходство/различие значений физико-химических свойств по их смыслу, т.е. по содержащейся в них информации о качестве вина с этими свойствами. Эти диаграммы мы получаем в режимах 4.3.2.1 и 4.3.2.2 (рисунок 23).

Из рисунка 23 видно, что все значения факторов образуют два крупных кластера, противоположных по их смыслу. Эти кластеры образуют полюса конструкта.

Отметим, что на когнитивной диаграмме, приведенной на рисунке 23, показаны *количественные* оценки сходства/различия значений факторов, полученные с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

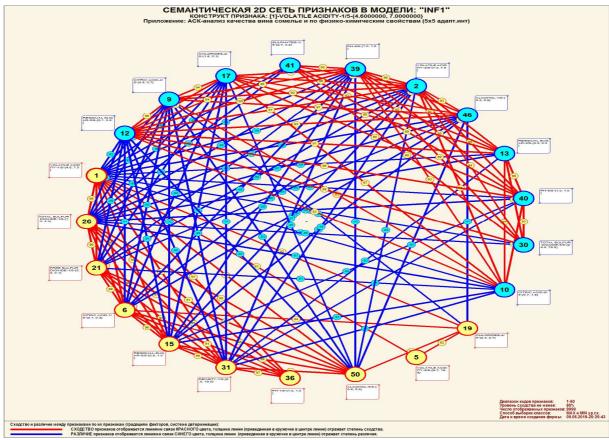



Рисунок 23. Когнитивная диаграмма и конструкт сходства/различия значений физико-химических свойств вина по их смыслу, т.е. по содержащейся в них информации о качестве вина с этими свойствами

Диаграмма, приведенная на рисунке 23, получена при параметрах, приведенных на рисунке 24.

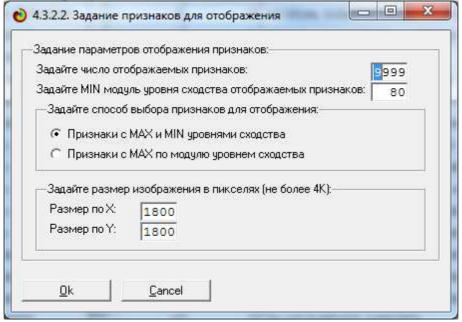



Рисунок 24. Параметры отображения когнитивной диаграммы, приведенной на рисунке 23

#### 4.3.4. Агломеративная когнитивная кластеризация значений факторов

На рисунке 25 приведена агломеративная дендрограмма когнитивной кластеризации значений факторов и график изменения межкластерных расстояний, полученные на основе той же матрицы сходства признаков по их смыслу, что и в когнитивных диаграммах, пример которой приведен на рисунке 23.

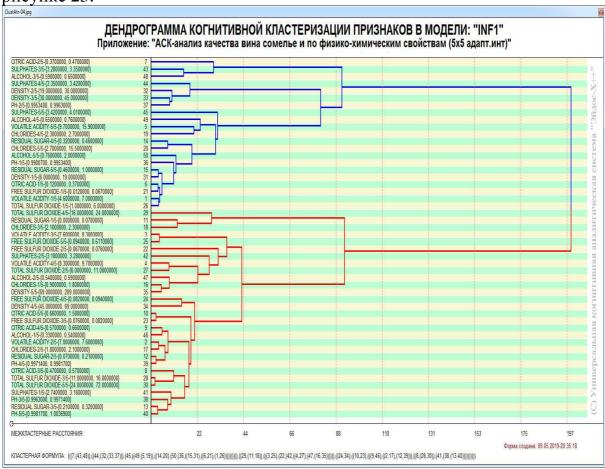



Рисунок 25. Дендрограмма агломеративной когнитивной кластеризации значений физико-химических свойств вина по их смыслу, т.е. по содержащейся в них информации о качестве вина с этими свойствами

Из дендрограммы на рисунке 25 мы видим, что все значения факторов образуют 2 четко выраженных кластера, объединенных в полюса конструкта (показаны синими и красным цветами).

Хорошо видна группировка значений физико-химических свойств вина по наблюдающимся при них качествам вина. Значения факторов на полюсах конструкта факторов (рисунок 25) обуславливают переход объекта моделирования в состояния, соответствующие классам, представленным на полюсах конструкта классов (рисунки 19 и 21).

На рисунке 26 приведен график межкластерных расстояний значений физико-химических свойств вина.



Рисунок 26. График изменения межкластерных расстояний при когнитивной кластеризации значений факторов

### 4.3.5. Нелокальные нейроны и нелокальные нейронные сети

На рисунке 27 приведены пример нелокального нейрона, а на рисунке 28 и фрагмент одного слоя нелокальной нейронной сети:

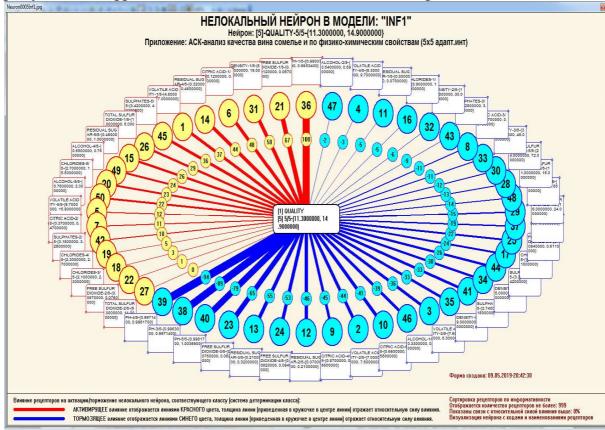



Рисунок 27. Пример нелокального нейрона

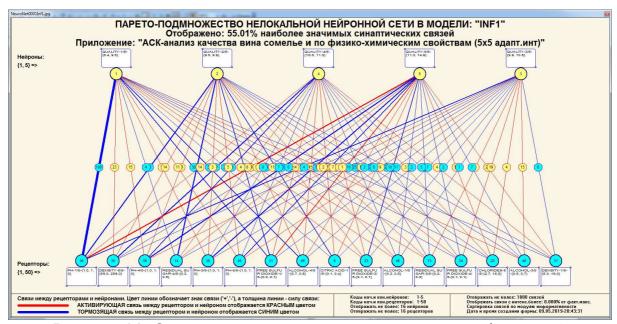



Рисунок 28. Один слой нелокальной нейронной сети (фрагмент)

В приведенном слое нейронной сети нейроны соответствуют классам качества вина, а рецепторы различным обуславливающим их значениям физико-химических свойств. Нейроны расположены слева на право в порядке убывания силы детерминации, т.е. слева находятся наиболее жестко обусловленные явления, а с права – менее жестко обусловленные.

Модель знаний системы «Эйдос» относится к нечетким *декларативным* гибридным моделям и объединяет в себе некоторые особенности нейросетевой [9] и фреймовой моделей представления знаний. Классы в этой модели соответствуют нейронам и фреймам, а признаки рецепторам и шпациям (описательные шкалы – слотам). От фреймовой модели представления знаний модель системы «Эйдос» отличается своей эффективной и простой программной реализацией, полученной за счет того, что разные фреймы отличаются друг от друга не набором слотов и шпаций, а лишь информацией в них. Поэтому в системе «Эйдос» при увеличении числа фреймов само количество баз данных не увеличивается, а увеличивается лишь их размерность. От нейросетевой модели представления знаний модель системы «Эйдос» отличается тем, что:

- 1) весовые коэффициенты на рецепторах не подбираются итерационным методом обратного распространения ошибки, а считаются прямым счетом на основе хорошо теоретически обоснованной модели, основанной на теории информации (это напоминает байесовские сети);
- 2) весовые коэффициенты имеют хорошо теоретически обоснованную содержательную интерпретацию, основанную на теории информации;
- 3) нейросеть является нелокальной [9], как сейчас говорят «полносвязной».

#### 4.3.6. 3d-интегральные когнитивные карты

На рисунке 29 приведен фрагмент 3d-интегральной когнитивной карты, отражающая СК-модель Inf3. 3d-интегральная когнитивная карта является отображением на одном рисунке когнитивных диаграмм классов и значений факторов, отображенных соответственно на рисунках 19 и 23, и одного слоя нейронной сети, приведенного на рисунке 28.



Рисунок 29. 3d-интегральная когнитивная карта в СК-модели Inf3

#### 4.3.7. Когнитивные функции

Вместо описания того, что представляют собой когнитивные функции, приведем help соответствующего режима системы «Эйдос» (рисунок 30) и сошлемся на работу, в которой это описано [10].

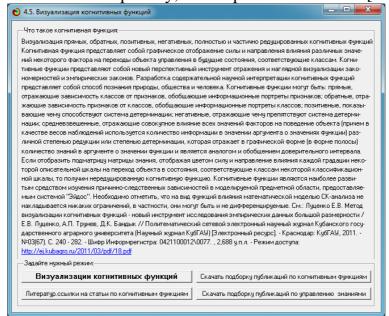
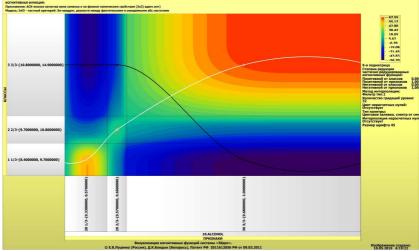
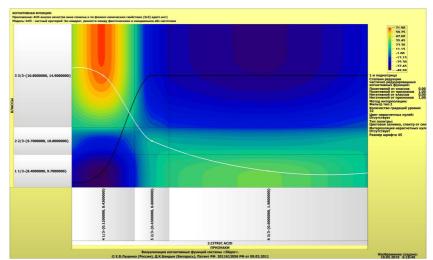
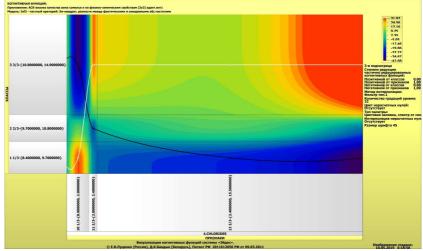
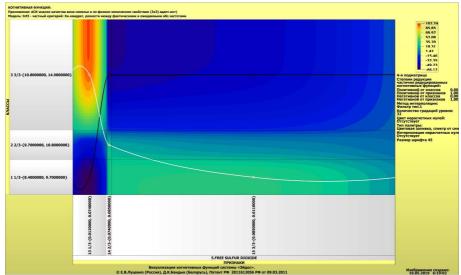




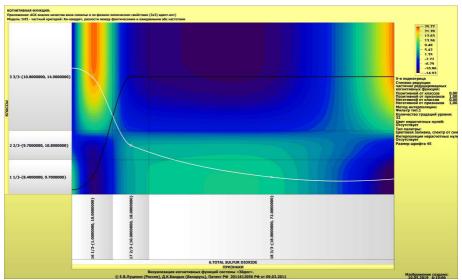

Рисунок 30. Help режима визуализации когнитивных функций


На рисунках 31 приведены некоторые когнитивные функции, наглядно отражающие силу и направление влияния значений (т.е. степени выраженности) различных объективно-установленных физико-химических свойств вина на субъективную сомелье-оценку качества этого вина.

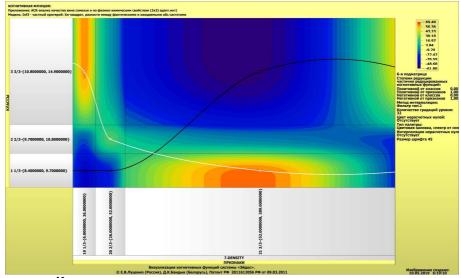



Качество вина тем выше, чем больше в нем алкоголя

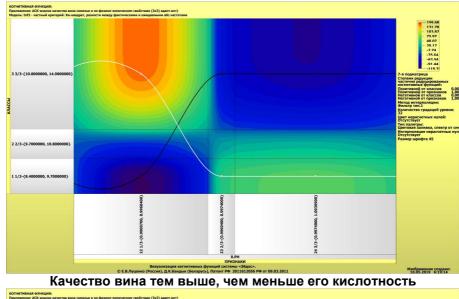


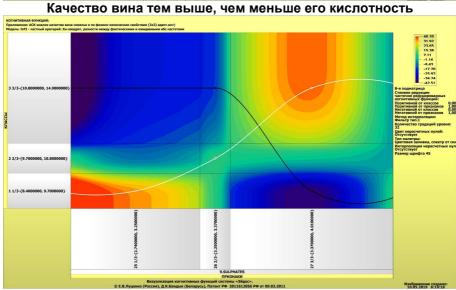

Качество вина тем выше, чем меньше в нем лимонной кислоты




Качество вина тем выше, чем больше в нем хлорида




Качество вина тем выше, чем меньше в нем свободного диоксида серы




Качество вина тем выше, чем меньше в нем общего диоксида серы



Качество вина тем выше, чем меньше его плотность





Качество вина тем выше, чем больше в нем сульфатов Рисунок 31. Примеры когнитивных функций

Знание того, какие объективные физико-химические свойства вина обуславливают высокую оценку его качества сомелье, можно приготовить некую смесь различных веществ, которая будет оцениваться не только простыми потребителями вина, но даже и экспертами, как вино достаточно высокого качества. Пример этого мы видим в нашумевшем видео: <a href="https://www.youtube.com/watch?v=hGje6LFGQY0">https://www.youtube.com/watch?v=hGje6LFGQY0</a>.

## 4.3.8. Сила влияния значений физико-химических свойств вина и самих этих свойств на сомелье-оценки качества вина

На рисунках 8, 9, 10 приведены фрагменты некоторых статистических и системно-когнитивных моделей, отражающих моделируемую предметную область.

Строки матриц моделей соответствуют значениям факторов, т.е. степени выраженности различных физико-химических свойств вина

(градации описательных шкал), устанавливаемых объективными методами в результате лабораторных исследований.

Колонки матриц моделей соответствуют различным классам по субъективными сомелье-оценкам качества вина (градации классификационных шкал).

Числовые значения в ячейках матриц моделей, находящихся на пересечении строк и колонок, отражают направление (знак) и силу влияния значения физико-химического свойства, соответствующего сроке, на принадлежность вина к классу качества, соответствующего колонке.

Если какое-то определенное значение физико-химического свойства слабо влияет на сомелье-оценку качества вина, то в соответствующей строке матрицы модели будут малые по модулю значения, если же влияние сильное – то и значения будут большие по модулю.

Если значение физико-химического свойства повышает сомельеоценку качества вина, то в соответствующей строке матрицы модели будут положительные значения, если же понижает — то и значения будут отрицательные.

Из этого понятно, что суммарную силу влияния того или иного значения физико-химического свойства вина на сомелье-оценку его качества (т.е. ценность данного значения физико-химического свойства для решении задачи идентификации и других задач) можно количественно оценивать *степенью вариабельности значений* в строке матрицы модели, соответствующей этому значению свойства.

Существует много мер вариабельности значений: это и среднее модулей отклонения от среднего, и дисперсия, и среднеквадратичное отклонение и другие. В АСК-анализе и системе «Эйдос» для этой цели принято использовать среднеквадратичное отклонение. Численно оно равно стандартному отклонению и вычисляется по той же формуле, но мы предпочитаем не использовать термин «стандартное отклонение», т.к. он предполагает нормальность распределения исследуемых последовательностей чисел, а значит и проверку соответствующих статистических гипотез.

Самая правая колонка в матрицах моделей на рисунках 8, 9, 10 содержит количественную оценку вариабельности значений строки модели (среднеквадратичное отклонение), которая и представляет собой ценность значения физико-химического свойства, соответствующего строке, для решения задач идентификации качества вина и решения других задач, рассмотренных в работе.

Если рассортировать матрицу модели по этой самой правой колонке в порядке убывания, а потом просуммировать значения в ней нарастающим итогом, то получим логистическую парето-кривую, отражающую зависимость ценности модели от числа наиболее ценных признаков в ней (рисунок 32, таблица 5).

Ценность же физико-химического свойства (всей описательной шкалы или фактора), для решения этих задач можно количественно оценивать как среднее от ценности значений этого свойства (таблица 6).




Рисунок 32. Парето-кривая значимости градаций описательных шкал

Таблица 5 – Парето-таблица значимости градаций описательных шкал

| Nº | ധ Код значения физхим.<br><sup>©</sup> свойства вина | Наименование значения физико-химического свойства вина | ∞ Код физхим. свойства<br>вина | О Ценность значения физ<br>С хим. свойства вина | O Ценность значения физ<br>လ хим. свойства вина<br>N нарастающим итогом | <sup>∞</sup> Ценность значения физ<br>& хим. свойства вина в % | шенность значения физ<br>ж хим. свойства вина в %<br>нарастающим итогом |
|----|------------------------------------------------------|--------------------------------------------------------|--------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|
| 2  | 21                                                   | FREE SULFUR DIOXIDE-1/5-{0.0120000, 0.0670000}         | 5                              | 0,32                                            | 0,32                                                                    | 4,53                                                           | 12,96                                                                   |
| 3  | 39                                                   | PH-4/5-{0.9971400, 0.9981700}                          | 8                              | 0,17                                            | 0,49                                                                    | 4,27                                                           | 17,23                                                                   |
| 4  | 35                                                   | DENSITY-5/5-{69.0000000, 289.0000000}                  | 7                              | 0,15                                            | 0,81                                                                    | 4,06                                                           | 21,29                                                                   |
| 5  | 14                                                   | RESIDUAL SUGAR-4/5-{0.3200000, 0.4600000}              | 3                              | 0,13                                            | 0,94                                                                    | 3,63                                                           | 24,92                                                                   |
| 6  | 6                                                    | CITRIC ACID-1/5-{0.1200000, 0.3700000}                 | 2                              | 0,14                                            | 1,08                                                                    | 3,55                                                           | 28,47                                                                   |
| 7  | 38                                                   | PH-3/5-{0.9963000, 0.9971400}                          | 8                              | 0,12                                            | 1,20                                                                    | 3,23                                                           | 31,70                                                                   |
| 8  | 40                                                   | PH-5/5-{0.9981700, 1.0036900}                          | 8                              | 0,12                                            | 1,31                                                                    | 2,96                                                           | 34,66                                                                   |
| 9  | 46                                                   | ALCOHOL-1/5-{0.3300000, 0.5400000}                     | 10                             | 0,10                                            | 1,42                                                                    | 2,77                                                           | 37,43                                                                   |
| 10 | 49                                                   | ALCOHOL-4/5-{0.6500000, 0.7600000}                     | 10                             | 0,10                                            | 1,52                                                                    | 2,71                                                           | 40,14                                                                   |
| 11 | 31                                                   | DENSITY-1/5-{6.0000000, 19.0000000}                    | 7                              | 0,10                                            | 1,62                                                                    | 2,63                                                           | 42,77                                                                   |
| 12 | 23                                                   | FREE SULFUR DIOXIDE-3/5-{0.0760000, 0.0820000}         | 5                              | 0,10                                            | 1,72                                                                    | 2,61                                                           | 45,38                                                                   |
| 13 | 9                                                    | CITRIC ACID-4/5-{0.5700000, 0.6600000}                 | 2                              | 0,10                                            | 1,81                                                                    | 2,54                                                           | 47,93                                                                   |
| 14 | 24                                                   | FREE SULFUR DIOXIDE-4/5-{0.0820000, 0.0940000}         | 5                              | 0,09                                            | 1,91                                                                    | 2,45                                                           | 50,37                                                                   |
| 15 | 12                                                   | RESIDUAL SUGAR-2/5-{0.0700000, 0.2100000}              | 3                              | 0,09                                            | 1,99                                                                    | 2,25                                                           | 52,62                                                                   |
| 16 | 1                                                    | VOLATILE ACIDITY-1/5-{4.6000000, 7.0000000}            | 1                              | 0,08                                            | 2,07                                                                    | 2,20                                                           | 54,82                                                                   |
| 17 | 13                                                   | RESIDUAL SUGAR-3/5-{0.2100000, 0.3200000}              | 3                              | 0,08                                            | 2,16                                                                    | 2,18                                                           | 57,00                                                                   |
| 18 | 48                                                   | ALCOHOL-3/5-{0.5900000, 0.6500000}                     | 10                             | 0,08                                            | 2,24                                                                    | 2,13                                                           | 59,13                                                                   |
| 19 | 3                                                    | VOLATILE ACIDITY-3/5-{7.6000000, 8.3000000}            | 1                              | 0,08                                            | 2,32                                                                    | 2,13                                                           | 61,25                                                                   |
| 20 | 20                                                   | CHLORIDES-5/5-{2.7000000, 15.5000000}                  | 4                              | 0,08                                            | 2,39                                                                    | 2,00                                                           | 63,26                                                                   |
| 21 | 50                                                   | ALCOHOL-5/5-{0.7600000, 2.0000000}                     | 10                             | 0,07                                            | 2,47                                                                    | 1,95                                                           | 65,20                                                                   |
| 22 | 45                                                   | SULPHATES-5/5-{3.4200000, 4.0100000}                   | 9                              | 0,07                                            | 2,54                                                                    | 1,92                                                           | 67,12                                                                   |
| 23 | 2                                                    | VOLATILE ACIDITY-2/5-{7.0000000, 7.6000000}            | 1                              | 0,07                                            | 2,61                                                                    | 1,88                                                           | 69,01                                                                   |
| 24 | 44                                                   | SULPHATES-4/5-{3.3500000, 3.4200000}                   | 9                              | 0,07                                            | 2,68                                                                    | 1,86                                                           | 70,86                                                                   |
| 25 | 10                                                   | CITRIC ACID-5/5-{0.6600000, 1.5800000}                 | 2                              | 0,06                                            | 2,74                                                                    | 1,67                                                           | 72,54                                                                   |
| 26 | 11                                                   | RESIDUAL SUGAR-1/5-{0.0000000, 0.0700000}              | 3                              | 0,06                                            | 2,81                                                                    | 1,65                                                           | 74,19                                                                   |
| 27 | 26                                                   | TOTAL SULFUR DIOXIDE-1/5-{1.0000000, 6.0000000}        | 6                              | 0,06                                            | 2,87                                                                    | 1,56                                                           | 75,75                                                                   |
| 28 | 25                                                   | FREE SULFUR DIOXIDE-5/5-{0.0940000, 0.6110000}         | 5                              | 0,06                                            | 2,92                                                                    | 1,52                                                           | 77,27                                                                   |
| 29 | 41                                                   | SULPHATES-1/5-{2.7400000, 3.1800000}                   | 9                              | 0,06                                            | 2,98                                                                    | 1,46                                                           | 78,73                                                                   |
| 30 | 15                                                   | RESIDUAL SUGAR-5/5-{0.4600000, 1.0000000}              | 3                              | 0,05                                            | 3,03                                                                    | 1,45                                                           | 80,18                                                                   |
| 31 | 37                                                   | PH-2/5-{0.9953400, 0.9963000}                          | 8                              | 0,05                                            | 3,09                                                                    | 1,43                                                           | 81,61                                                                   |
| 32 | 42                                                   | SULPHATES-2/5-{3.1800000, 3.2800000}                   | 9                              | 0,05                                            | 3,14                                                                    | 1,42                                                           | 83,03                                                                   |
| 33 | 32                                                   | DENSITY-2/5-{19.0000000, 30.0000000}                   | 7                              | 0,05                                            | 3,19                                                                    | 1,34                                                           | 84,37                                                                   |
| 34 | 5                                                    | VOLATILE ACIDITY-5/5-{9.7000000, 15.9000000}           | 1                              | 0,05                                            | 3,24                                                                    | 1,32                                                           | 85,70                                                                   |

| 35 | 34 | DENSITY-4/5-{45.0000000, 69.0000000}              | 7  | 0,05 | 3,29 | 1,22 | 86,92  |
|----|----|---------------------------------------------------|----|------|------|------|--------|
| 36 | 47 | ALCOHOL-2/5-{0.5400000, 0.5900000}                | 10 | 0,04 | 3,33 | 1,14 | 88,06  |
| 37 | 17 | CHLORIDES-2/5-{1.8000000, 2.1000000}              | 4  | 0,04 | 3,37 | 1,11 | 89,17  |
| 38 | 19 | CHLORIDES-4/5-{2.3000000, 2.7000000}              | 4  | 0,04 | 3,41 | 1,07 | 90,24  |
| 39 | 29 | TOTAL SULFUR DIOXIDE-4/5-{16.0000000, 24.0000000} | 6  | 0,04 | 3,45 | 1,06 | 91,30  |
| 40 | 18 | CHLORIDES-3/5-{2.1000000, 2.3000000}              | 4  | 0,04 | 3,49 | 1,04 | 92,34  |
| 41 | 7  | CITRIC ACID-2/5-{0.3700000, 0.4700000}            | 2  | 0,04 | 3,53 | 1,01 | 93,35  |
| 42 | 33 | DENSITY-3/5-{30.0000000, 45.0000000}              | 7  | 0,04 | 3,57 | 0,98 | 94,33  |
| 43 | 16 | CHLORIDES-1/5-{0.9000000, 1.8000000}              | 4  | 0,04 | 3,61 | 0,96 | 95,29  |
| 44 | 43 | SULPHATES-3/5-{3.2800000, 3.3500000}              | 9  | 0,03 | 3,64 | 0,91 | 96,20  |
| 45 | 8  | CITRIC ACID-3/5-{0.4700000, 0.5700000}            | 2  | 0,03 | 3,67 | 0,74 | 96,94  |
| 46 | 27 | TOTAL SULFUR DIOXIDE-2/5-{6.0000000, 11.0000000}  | 6  | 0,03 | 3,70 | 0,71 | 97,65  |
| 47 | 28 | TOTAL SULFUR DIOXIDE-3/5-{11.0000000, 16.0000000} | 6  | 0,02 | 3,72 | 0,63 | 98,28  |
| 48 | 30 | TOTAL SULFUR DIOXIDE-5/5-{24.0000000, 72.0000000} | 6  | 0,02 | 3,74 | 0,62 | 98,91  |
| 49 | 4  | VOLATILE ACIDITY-4/5-{8.3000000, 9.7000000}       | 1  | 0,02 | 3,76 | 0,59 | 99,49  |
| 50 | 22 | FREE SULFUR DIOXIDE-2/5-{0.0670000, 0.0760000}    | 5  | 0,02 | 3,78 | 0,51 | 100,00 |

Таблица 6 – Парето-таблица значимости описательных шкал

| Nº | Код физхим. свойства вина | Наименование физхим. свойства вина | Число градаций физхим.<br>свойства вина | Код минимальной градации<br>физхим. свойства вина | Код максимальной градации<br>физхим. свойства вина | Значимость физхим.<br>свойства вина | Значимость физхим.<br>свойства вина нарастающим<br>итогом | )     | Значимость физхим.<br>свойства вина нарастающим<br>итогом в % |
|----|---------------------------|------------------------------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------|-----------------------------------------------------------|-------|---------------------------------------------------------------|
| 1  | 8                         | PH                                 | 5                                       | 36                                                | 40                                                 | 0,15                                | 0,15                                                      | 20,32 | 20,32                                                         |
| 2  | 5                         | FREE SULFUR DIOXIDE                | 5                                       | 21                                                | 25                                                 | 0,09                                | 0,24                                                      | 11,61 | 31,93                                                         |
| 3  | 3                         | RESIDUAL SUGAR                     | 5                                       | 11                                                | 15                                                 | 0,08                                | 0,33                                                      | 11,17 | 43,10                                                         |
| 4  | 10                        | ALCOHOL                            | 5                                       | 46                                                | 50                                                 | 0,08                                | 0,41                                                      | 10,70 | 53,79                                                         |
| 5  | 7                         | DENSITY                            | 5                                       | 31                                                | 35                                                 | 0,08                                | 0,48                                                      | 10,24 | 64,03                                                         |
| 6  | 2                         | CITRIC ACID                        | 5                                       | 6                                                 | 10                                                 | 0,07                                | 0,56                                                      | 9,52  | 73,55                                                         |
| 7  | 1                         | VOLATILE ACIDITY                   | 5                                       | 1                                                 | 5                                                  | 0,06                                | 0,62                                                      | 8,12  | 81,67                                                         |
| 8  | 9                         | SULPHATES                          | 5                                       | 41                                                | 45                                                 | 0,06                                | 0,68                                                      | 7,56  | 89,23                                                         |
| 9  | 4                         | CHLORIDES                          | 5                                       | 16                                                | 20                                                 | 0,05                                | 0,72                                                      | 6,19  | 95,42                                                         |
| 10 | 6                         | TOTAL SULFUR DIOXIDE               | 5                                       | 26                                                | 30                                                 | 0,03                                | 0,76                                                      | 4,58  | 100,00                                                        |

Из таблицы 6 видно, что наибольшую роль в оценке качества вина сомелье играет такое физико-химическое свойство, как кислотность (рН) вина, и далее в порядке убывания значимости идут:

- Ph Водородный показатель

- Free sulfur dioxide Свободный диоксид серы

- Residual sugar Остаточный сахар

Alcohol АлкогольDensity Плотность

- Citric acid Лимонная кислота - Volatile acidity Летучая кислотность

Sulphates СульфатыChlorides Хлорид

- Total sulfur dioxide Общий диоксид серы

причем значимость последнего физико-химического свойства в этом рейтинге в 5 раз ниже значимости первого, т.е. разница в значимости весьма существенная.

## 4.3.8. Степень детерминированности (обусловленности) сомелье-оценок качества вина его объективными физико-химическими свойствами

Степень детерминированности (обусловленности) класса в системе «Эйдос» количественно оценивается *степенью вариабельности значений* описательных шкал в колонке матрицы модели, соответствующей данному классу (таблица 7). На рисунке 33 мы видим Парето-кривую степени детерминированности классов нарастающим итогом.

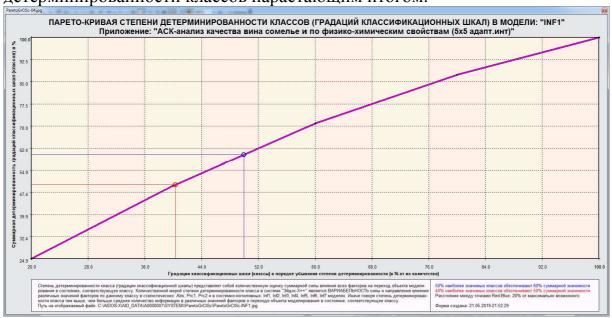



Рисунок 33. Парето-кривая степени детерминированности классов

Таблица 7 – Парето-таблица степеней детерминированности (обусловленности) классов, т.е. сомелье-оценок качества вина в СК-молели INF1

|    |    |                                      |         | Сумма   |         | Сумма   |
|----|----|--------------------------------------|---------|---------|---------|---------|
|    |    |                                      | Степень | степени | Степень | степени |
|    |    |                                      | детерми | детерми | детерми | детерми |
|    |    |                                      | нирован | нирован | нирован | нирован |
|    | Ко |                                      | ности   | ности   | ности   | ности   |
| Nº | Д  | Наименование класса                  | (бит)   | (бит)   | (%)     | (%)     |
| 1  | 5  | QUALITY-5/5-{11.3000000, 14.9000000} | 0,103   | 0,103   | 24,881  | 24,881  |
| 2  | 1  | QUALITY-1/5-{8.4000000, 9.5000000}   | 0,102   | 0,205   | 24,759  | 49,640  |
| 3  | 2  | QUALITY-2/5-{9.5000000, 9.9000000}   | 0,088   | 0,293   | 21,240  | 70,880  |
| 4  | 4  | QUALITY-4/5-{10.5000000, 11.3000000} | 0,069   | 0,362   | 16,564  | 87,443  |
| 5  | 3  | QUALITY-3/5-{9.9000000, 10.5000000}  | 0,052   | 0,414   | 12,557  | 100,000 |

Из таблицы 7 мы видим, что объективные физико-химические свойства вина наиболее жестко детерминируют (обуславливают) сомельеоценку качества вина как максимальную и минимальную, а наиболее слабо – среднюю. При этом степень детерминированности наиболее и наименее детерминированных классов отличается примерно в два раза, что весьма существенно. Оценки выше и ниже среднего по степени

детерминированности занимают промежуточное положение между максимальными и минимальными оценками качестве вина с одной стороны, и средней его оценкой с другой. Это значит, что для сомелье проще всего идентифицировать вина максимального и минимального качества, а сложнее всего среднего качества. Вина качества выше и ниже среднего идентифицируются сомелье лучше, чем среднего, но хуже, чем максимального и минимального. Все это весьма логично и хорошо вписывается в предыдущие результаты анализа.

Однако, из данного исследования можно сделать обоснованный вывод о том, что шкала сомелье-оценок качества вина со 100 градациями — это большой аванс и комплемент сомелье, а фактически вполне достаточно 5, или даже 3 градаций, т.к. именно при таком количестве градаций субъективные сомелье-оценки хорошо совпадают с оценками качества вина на основе его объективных физико-химических свойств.

Степень детерминированности (обусловленности) всей классификационной шкалы является средним от степени детерминированности ее градаций, т.е. классов.

Поскольку в СК-модели, рассматриваемой в данной работе, только одна классификационная шкала, то мы не можем ранжировать классификационные шкалы в порядке убывания средней степени детерминированности их градаций.

#### 5. Выводы

Как показывает анализ результатов численного эксперимента предложенное и реализованное в системе «Эйдос» решение поставленных задач является вполне эффективным, что позволяет обоснованно утверждать, что цель работы достигнута, проблема решена.

В результате проделанной работы, с помощью системы «Эйдос» были созданы 3 статистические и 7 системно-когнитивных моделей, в которых непосредственно на основе эмпирических данных сформированы обобщенные образы классов по различным классам качества вина, изучено влияние значений различных объективных физико-химических свойств вина на субъективную сомелье-оценку качества вина, и, на основе этого, решены задачи идентификации, принятия решений и исследования моделируемой предметной области путем исследования ее модели.

Со всеми моделями, созданными в данной статье, можно ознакомиться установив облачное Эйдос-приложение №148 в режиме 1.3 системы «Эйдос».

Автор благодарен доктору биологических наук профессору Андрею Георгиевичу Кощаеву <a href="https://kubsau.ru/university/rectorate/">https://kubsau.ru/university/rectorate/</a> за предоставленную возможность опубликования данной статьи.

#### Список литературы

- 1. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). Краснодар: КубГАУ. 2002. 605 с. http://elibrary.ru/item.asp?id=18632909
- 2. Исходные данные: <a href="https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009">https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009</a>
  - 3. Исходные данные: <a href="https://archive.ics.uci.edu/ml/datasets/wine+quality">https://archive.ics.uci.edu/ml/datasets/wine+quality</a>
- 4. P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009. https://doi.org/10.1016/j.dss.2009.05.016
- 5. Луценко Е.В. Метризация измерительных шкал различных типов и совместная сопоставимая количественная обработка разнородных факторов в системно-когнитивном анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №08(092). С. 859 883. IDA [article ID]: 0921308058. Режим доступа: <a href="http://ej.kubagro.ru/2013/08/pdf/58.pdf">http://ej.kubagro.ru/2013/08/pdf/58.pdf</a>, 1,562 у.п.л.
- 6. Луценко Е.В. Инвариантное относительно объемов данных нечеткое мультиклассовое обобщение F-меры достоверности моделей Ван Ризбергена в АСК-анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №02(126). С. 1 32. IDA [article ID]: 1261702001. Режим доступа: <a href="http://ej.kubagro.ru/2017/02/pdf/01.pdf">http://ej.kubagro.ru/2017/02/pdf/01.pdf</a>, 2 у.п.л.
- 7. Луценко Е.В. Количественный автоматизированный SWOT- и PEST-анализ средствами АСК-анализа и интеллектуальной системы «Эйдос-Х++» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. №07(101). С. 1367 1409. IDA [article ID]: 1011407090. Режим доступа: <a href="http://ej.kubagro.ru/2014/07/pdf/90.pdf">http://ej.kubagro.ru/2014/07/pdf/90.pdf</a>, 2,688 у.п.л.
- 8. Луценко Е.В. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном анализе и интеллектуальной системе «Эйдос») / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. №07(071). С. 528 576. Шифр Информрегистра: 0421100012\0253, IDA [article ID]: 0711107040. Режим доступа: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 у.п.л.
- 9. Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2003. №01(001). С. 79 91. IDA [article ID]: 0010301011. Режим доступа: <a href="http://ej.kubagro.ru/2003/01/pdf/11.pdf">http://ej.kubagro.ru/2003/01/pdf/11.pdf</a>, 0,812 у.п.л.
- 10. Орлов А.И., Луценко Е.В. Системная нечеткая интервальная математика. Монография (научное издание). Краснодар, КубГАУ. 2014. 600 с. ISBN 978-5-94672-757-0. <a href="http://elibrary.ru/item.asp?id=21358220">http://elibrary.ru/item.asp?id=21358220</a>

#### Spisok literatury`

- 1. Lucenko E.V. Avtomatizirovanny`j sistemno-kognitivny`j analiz v upravlenii aktivny`mi ob``ektami (sistemnaya teoriya informacii i ee primenenie v issledovanii e`konomicheskix, social`no-psixologicheskix, texnologicheskix i organizacionnotexnicheskix sistem): Monografiya (nauchnoe izdanie). Krasnodar: KubGAU. 2002. 605 s. http://elibrary.ru/item.asp?id=18632909
- 2. Isxodny'e danny'e: https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
  - 3. Isxodny`e danny`e: https://archive.ics.uci.edu/ml/datasets/wine+quality
- 4. P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009. https://doi.org/10.1016/j.dss.2009.05.016
- 5. Lucenko E.V. Metrizaciya izmeritel`ny`x shkal razlichny`x tipov i sovmestnaya sopostavimaya kolichestvennaya obrabotka raznorodny`x faktorov v sistemno-kognitivnom analize i sisteme «E`jdos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2013. №08(092). S. 859 883. IDA [article ID]: 0921308058. Rezhim dostupa: http://ej.kubagro.ru/2013/08/pdf/58.pdf, 1,562 u.p.l.
- 6. Lucenko E.V. Invariantnoe otnositel`no ob``emov danny`x nechetkoe mul`tiklassovoe obobshhenie F-mery` dostovernosti modelej Van Rizbergena v ASK-analize i sisteme «E`jdos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2017. − №02(126). S. 1 − 32. − IDA [article ID]: 1261702001. − Rezhim dostupa: http://ej.kubagro.ru/2017/02/pdf/01.pdf, 2 u.p.l.
- 7. Lucenko E.V. Kolichestvenny`j avtomatizirovanny`j SWOT- i PEST-analiz sredstvami ASK-analiza i intellektual`noj sistemy` «E`jdos-X++» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2014. №07(101). S. 1367 1409. IDA [article ID]: 1011407090. Rezhim dostupa: http://ej.kubagro.ru/2014/07/pdf/90.pdf, 2,688 u.p.l.
- 8. Lucenko E.V. Metod kognitivnoj klasterizacii ili klasterizaciya na osnove znanij (klasterizaciya v sistemno-kognitivnom analize i intellektual`noj sisteme «E`jdos») / E.V. Lucenko, V.E. Korzhakov // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2011. №07(071). S. 528 576. Shifr Informregistra: 0421100012\0253, IDA [article ID]: 0711107040. Rezhim dostupa: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 u.p.l.
- 9. Lucenko E.V. Sistemnaya teoriya informacii i nelokal`ny`e interpretiruemy`e nejronny`e seti pryamogo scheta / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2003. − №01(001). S. 79 − 91. − IDA [article ID]: 0010301011. − Rezhim dostupa: http://ej.kubagro.ru/2003/01/pdf/11.pdf, 0,812 u.p.l.
- 10. Orlov A.I., Lucenko E.V. Sistemnaya nechetkaya interval`naya matematika. Monografiya (nauchnoe izdanie). Krasnodar, KubGAU. 2014. 600 s. ISBN 978-5-94672-757-0. http://elibrary.ru/item.asp?id=21358220