УДК 541.67+544.163.2

О ЗАКОНОМЕРНОСТЯХ ИЗМЕНЕНИЙ ВАЛЕНТНЫХ УГЛОВ И ПОТЕНЦИАЛОВ ИОНИЗАЦИИ В РЯДАХ МОЛЕКУЛ ВИДА ЭХ₃ И ЭХ₂

Халитов Фарит Гусманович д.х.н., профессор

Халитов Карим Фаритович

Казанский государственный энергетический университет, Казань, Россия

Проведены корреляции между величинами разности первых потенциалов ионизации атомов и молекул (ΔE) и валентными углами α для трехкоординированных соединений вида $\Im X_3$ (\Im =N,P,As,Sb; X=F,Cl,Br,I,CH₃), а также $\Im X_2$ (\Im =O,S,Se,Te; X= CH₃, SiH₃, GeH₃). Показано, что введенная величина ΔE может служить аддитивной мерой изменения валентного угла α в основном и возбужденном состояниях. У становленные функциональные зависимости согласуются с изменениями характера гибридизации орбиталей и параметров R, характеризующих взаимодействие электронных пар при центральном атоме \Im

Ключевые слова: ПОТЕНЦИАЛЫ ИОНИЗАЦИИ, ВАЛЕНТНЫЕ УГЛЫ, НЕПОДЕЛЕННЫЕ ЭЛЕК-ТРОННЫЕ ПАРЫ UDC 541.67+544.163.2

ABOUT REGULARITIES OF CHANGES OF VALENT ANGLES AND POTENTIALS OF IONIZATION IN THE RANKS OF $\Im X_3$ AND $\Im X_2$ MOLECULES

Khalitov Farit Gusmanovich Dr.Sci.Chem., professor

Khalitov Karim Faritovich Kazan state power university, Kazan, Russia

Correlations between values of the differences of first potentials ionization of atoms and molecules (ΔE) and valency angels α for three coordinated molecules of types $\Im X_3$ (\Im =N, P, As, Sb are carried out; X=F, Cl, Br, I, CH₃), and also $\Im X_2$ (\Im =O, S, Se, Te; X = CH₃, SiH₃, GeH₃) are described in this article. It is shown, that the entered value ΔE can serve as additive measure of change of the valency angle α in the basic and raised stances. We have also established that the functional dependences correlate with changes in the of hybridization of orbitals and the R parameters characterizing the interaction of electronic pairs near the central \Im atom

Keywords: POTENTIALS OF IONIZATION, VALENCY ANGLES, LONE PAIRS OF THE ELECTRONS

Известно, что интерпретация данных метода фотоэлектронной спектроскопии (ФЭС) позволяет, в частности, изучать изменения геометрических характеристик молекулы в основном, возбужденном и ионизированном состояниях [1-2]. В ФЭС трехкоординированных симметричных производных ЭХ₃ (Э=N, P, As, Sb) имеется полоса, соответствующая первому потенциалу ионизации, которая идентифицируется с выбиванием электрона п-орбитали (верхней заполненной молекулярной орбитали) и отрывом электрона неподеленной электронной пары (НЭП), характеризуя её энергию и в значительной мере зависит от валентных углов и гибридизации Э [1-3].

В работах [3-11] проводится поиск взаимосвязи потенциалов ионизации (ПИ) с различными физико-химическими параметрами для родственных рядов соединений, в частности, эмпирических корреляций для молекул пятой группы периодической системы. Из них следует, что между первыми ПИ и различными молекулярными свойствами наблюдаются прямолинейные зависимости. Однако в рассмотренных рядах коррелируются ограниченное число молекул или обсуждаются ряды с одинаковыми центральными элементами Э.

С целью расширения числа молекул, участвующих в корреляционных зависимостях в данной статье были рассмотрены взаимосвязи значений первых ПИ с валентными углами в рамках модели отталкивания электронных пар валентной оболочки (ОЭПВО) [12,13].

Из этой модели следует, что энергия ионизации электрона НЭП $(E_{\rm H}^{\rm 9})$, в частности, определяется кулоновским притяжением к ядру и отталкиванием от связывающих электронных пар (СЭП), и будет определять строение молекулы, т.е. валентные углы α в производных ЭХ₃.

В таблице 1 приведены литературные данные для углов α , полученные в газовой фазе методами микроволновой спектроскопии и электронографии [14-20]. При наличии набора экспериментальных данных для одной молекулы использовались средние значения. Отклонение значений α , полученных разными авторами для некоторых соединений, составляет более 1°. В таблице 1 указаны также первые потенциалы ионизации ($E_{\rm H}^3$) молекул ЭХ₃ (Э=N,P, As, Sb, Bi). Данные получены методом фотоэлектронной спектроскопии в газовой фазе [1-5, 9].

Из таблицы 1, для горизонтальных рядов молекул ЭHgl₃ при изменении Э (N,P,As,Sb,Bi) и одинаковом Х, потенциалы ионизации молекул $E_{\rm H}^{9}$ близки, при этом изменяются потенциалы ионизации атомов E_{i}^{9} и углы α . Так, для ряда 1 среднее $E_{\rm H}^{9}$ =12.77±0.47 эВ; для 2 - $E_{\rm H}^{9}$ =10.75±0.23 эВ; для 3 - 10.09±0.13 эВ; для 4 - 9.10±0.05 эВ; для 5 - 8.53±0.12 эВ. Для ряда 7 $E_{\rm H}^{\rm N}$ молекулы N(C₆H₅)₃ значительно выше среднего значения. В ряду 8 у $N(SiH_3)_3 E_H^N$ также выше на 0.4 эВ. Исключая из рассмотрения молекулы $N(C_6H_5)_3$ и $N(SiH_3)_3$, получаем среднее E_μ^3 для ряда 7 - 8.00±0.18 эВ,

№	Ę	N(14.53)*		P(10.48)		As(9.81)		Sb(8.64)		Bi(7.29)	
	X	$E_{\mathrm{H}}^{\mathrm{\Im}}$	α	$E_{ m H}^{ m \Theta}$	α	$E_{ m H}^{ m \Theta}$	α	$E_{ m H}^{ m \Theta}$	α	$E_{ m H}^{ m \Theta}$	α
1	F	12.97	102.4	12.28	96.9	13.00	96.0	12.66	95.0	12.96	-
2	Cl	10.69	107.4	10.52	100.1	10.85	98.6	10.73	97.2	10.98	97.3
3	Br	-	-	9.96	101.0	10.21	99.7	10.04	98.2	10.15	-
4	J	-	-	9.15	102.0	9.11	100.2	9.06	99.0	9.09	-
5	CH ₃	8.50	109.8	8.62	98.8	8.65	96.2	8.48	94.2	8.44	96.9
6	Н	10.90	106.8	10.60	93.5	10.51	91.7	10.02	91.3	-	-
7	C_6H_5	10.27	116.0	7.88	103.0	7.95	102.0	8.18	97.3	-	94.0
8	SiH ₃	9.7	119.6	9.3	96.8	9.3	94.1	_	89.0	-	-

Таблица 1 - Экспериментальные значения первых потенциалов ионизации $E^{\Im}_{\mu}(\Im B)$ и валентных углов α (град.) в молекулах $\Im X_{3}$

*- В скобках указаны значения первых потенциалов ионизации атомов $E_i^{\mathcal{P}}$, эВ. значения потенциалов P(SiH₃)₃ и As(SiH₃)₃ для ряда 8 равны. Для ряда 6 наблюдается некоторое уменьшение $E_u^{\mathcal{P}}$, однако в пределах 0.90 эВ.

Для вертикальных рядов, при постоянных Э и соответственно их равных потенциалах ионизации атома Э (E_i^{\Im}) , изменяются Х(F,Cl,Br,I), потенциалы ионизации молекул E_H^{\Im} и углы α . Если ввести величину $\Delta E = E_i^{\Im} - E_H^{\Im}$, т.е. разность первых потенциалов ионизации центрального атома Э и молекулы ЭХ₃ и рассмотреть зависимость от α , то все тригалогениды (производные Bi не рассматриваются) описываются функцией вида:

$$\Delta E = E_i^{\mathcal{F}} - E_H^{\mathcal{F}} = -A + B \cdot \alpha$$

$$\Delta E = E_i^{\mathcal{F}} - E_H^{\mathcal{F}} = -64.015 + 0.638 \alpha = -0.638(100.272 - \alpha),$$

$$r = 0.980, S = \pm 0.419, n = 14$$

(1)

В [21] приведены значения валентных углов возбужденных молекул PF_3^* (α =110°) и PCl_3^* (α =111°), полученные из анализа спектров поглощения галогенидов фосфора, в области дальнего УФ (λ_{max} для PF₃ – 1564 $\overset{\circ}{A}$,

 $PCl_3 - 1750 A$). Эти переходы связаны с возбуждением НЭП фосфора. Выражая энергию возбуждения δE в эВ можно рассчитать E_H^P для PF_3^* и PCl_3^* относительно основного состояния PF_3 и PCl_3 .

Так для
$$PF_3^*$$
 $E_H^{\mathcal{P}}(PF_3^*) = E_H^{\mathcal{P}} - \delta E$

$$\delta E = hv = \frac{hc}{\lambda} = 7.93 \text{ }\text{3B},$$

где h - постоянная Планка, $c = 3 \cdot 10^8$ м/с.

T.e. $E_H^{\mathcal{H}}(PF_3^*) = E_H^{\mathcal{H}} - \delta E = 12.30 \cdot B - 7.93 \cdot B = 4.37 \cdot B$

Для PCl_3^* $E_H^{\mathcal{H}}(PCl_3^*) = 3.43$ эВ.

Рисунок . Зависимости величин ΔE от углов α : 2 – для ЭHgl₃ (Э =N,P,As,Sb); 1 – для ЭМе₃.

С учетом данных для возбужденных молекул PF_3^* и PCl_3^* функция зависимости будет

$$\Delta E = -64,340 + 0,642 \ \alpha = -0,642 \ (100,265 - \alpha) = -0,642 \ \Delta \alpha$$
(2)
$$r = 0,992; \qquad S = \pm 0,392; \qquad n = 16$$

На рисунке приведена зависимость $\Delta E = E_i^{\mathcal{P}} - E_H^{\mathcal{P}}$ от α для всех 16 соединений $\mathcal{P}Hgl_3$, включая PF_3^* и PCl_3^* . Из него видно, что общая функция ΔE от α хорошо описывается единой прямой (2).

Данные для иона PF_3^+ (α =120°), для которого $E_H^P = 0$ [21], тоже укладываются на эту прямую. Общая зависимость $\Delta E = E_i^{\ 9} - E_H^{\ 9}$ от α для всех 17 соединений ЭHgl₃, включая PF_3^+ , PF_3^* и PCl_3^* так же описывается единой прямой вида

$$\Delta E = E_i^{\mathcal{P}} - E_H^{\mathcal{P}} = -58,588 + 0,584\alpha = -0,584(100,32 - \alpha)$$
(3)
r = 0.991, S₀ = ±0.540, n = 17.

и близка к формуле (1) для (ЭНgl₃).

Вместе с тем необходимо отметить, что для отдельных рядов $\Im F_3$, $\Im Cl_3$, $\Im Br_3$ и $\Im I_3$ коэффициенты B в уравнении (1) будут различаться и равны соответственно для:

$$\begin{array}{ll} \Im F_{3} & \Delta E = -73,505 + 0,734 \ \alpha \\ \Im Cl_{3} & \Delta E = -57,163 + 0,569 \ \alpha \\ \Im Br_{3} & \Delta E = -68,698 + 0,685 \ \alpha \\ \Im I_{3} & \Delta E = -56,181 + 0,565 \ \alpha \end{array}$$

Но среднее их значение равно приведенному в формуле (1) 0,638 для всех 14 соединений.

На этом же рисунке приведена прямая для триметилпроизводных ЭМе₃ (5 ряд, исключая Bi), которая описывается функцией

$$\Delta E = E_i^{\ 9} - E_{\rm H}^{\ 9} = -34.649 + 0.370\alpha = -0.370(93,646 - \alpha)$$

$$r = 0.999, \qquad S_0 = \pm 0.1519B, \qquad n = 4.$$
(4).

Прямая зависимости ΔE от α для 16 соединений с заместителями X=Me,H,Ph и Si для рядов 5,6,7,8 (включая ионы *PH*₃⁺ (α =119.7°), *AsH*₃⁺ (α =118.9°), *SbH*₃⁺ (α =118.1°) [22]), так же описывается близкой к (4) функцией:

$$E_i^{\mathcal{P}} - E_H^{\mathcal{P}} = -36.001 + 0.381\alpha = -0.381(94.491 - \alpha)$$

r = 0.988, S₀ = ±0.611, n = 16.

Во всех обсуждаемых молекулах вида ЭХ₃ (исключая N(C₆H₅)₃ и N(SiH₃)₃) как при замещении атома Э, так и при изменении заместителей Х мерой зависимости изменения угла α является разность $\Delta E = E_i^{\ 3} - E_{\rm H}^{\ 3}$. По величинам коэффициентов В при углах· α в уравнениях (2) и (4) все обсуждаемые соединения можно разделить на две различающиеся группы: к первой относятся тригалогениды, к другой X=H, CH₃, C₆H₅, SiH₃, соответственно элементы VII- и IV- групп периодической системы. Такое деление может быть следствием различного характера СЭП для этих групп молекул [12,13]. Поэтому для соединений Э(XR)₃, где X= O,S - элементы VI- групп периодической системы, можно ожидать значения величины В при α в формулах (1) и (4) между 0.638 и 0.370. Действительно для прямой, проведенной между точками для P(OCH₃)₃ ($E_H^{\ 3}$ = 9.00 эВ, Δ E=1,48 эВ, α =100°) [23,24] и α = 109.5°, $\Delta E_H^{\ 3}$ = 5.89 эВ (точка пересечения функций (1) и (4)) коэффициент В равен 0.459.

Таблица 2 - Экспериментальные значения первых потенциалов ионизации E_{H}^{3} (эВ) атома Э и валентных углов α в молекулах ЭХ₂

				•		2		
Э	Э О(13.61)*		S(10.36)		Se(9.75)		Te(9.01)	
Х	$E_{H}^{\mathcal{A}}$	α	$E_{H}^{\mathcal{A}}$	α	$E_{H}^{\mathcal{A}}$	α	$E_{H}^{\mathcal{A}}$	α
CH ₃	10.04	111.5	8.71	98.87	8.40	96.2	7.89	93.55
SiH ₃	11.17	144.1	9.70	97.4	9.14	96.6	8.63	-
GeH ₃	10.40	126	9.25	98.9	8.84	94.6	8.34	-

*В скобках указаны значения первых потенциалов ионизации атомов $E_i^{\mathfrak{I}}$, эВ.

Для рядов ЭХ₂ так же наблюдаются прямолинейные зависимости ΔE от α . В таблице 2 приведены E_i^{\Im}, E_H^{\Im} и α для соединений ЭХ₂, где Э=О, S, Se, Te [1,2,25-28].

Для Э(CH₃)₂ Э=О, S, Se, Te:

$$E_i^{\mathcal{P}} - E_H^{\mathcal{P}} = -12.111 + 0.140\alpha$$

r = 0.996, $S_0 = \pm 0.117$.

для Э(SiH₃)₂, Э=О, S, Se:

$$E_i^{\mathcal{D}} - E_H^{\mathcal{D}} = -3.146 + 0.039 \alpha$$

r = 0.999, $S_0 = \pm 0.042$.

для Э(GeH₃)₂, Э=О, S, Se

$$E_i^{\mathcal{D}} - E_H^{\mathcal{D}} = -6.100 + 0.074\alpha$$

r = 0.999, $S_0 = \pm 0.007$

Таким образом, из изложенного вытекает, что при замещении Э и Х в рядах молекул ЭХ₃ и ЭХ₂, состоящих из атомов с одинаковым электронным окружением, аддитивной мерой изменения углов α являются разности $\Delta E = E_i^3 - E_H^3$.

Зависимости $\Delta E = E_i^3 - E_H^3$ от α для рассмотренных рядов согласуются с теорией ОЭПВО об изменении сил отталкивания электронных пар и соответственно углов α при варьировании электроотрицательности атомов X и Э. Методика количественного учета этих изменений, описанна в [13]. Для характеристики относительных энергий отталкивания НЭП и СЭП в [13] введён параметр $R = \frac{r_1}{r_2}$, где r_1 и r_2 эффективные расстояния от центра атома Э до точечных НЭП и СЭП. В расчетах r_2 принято равным 1. Величина R связана с отношением расстояний между двумя СЭП и между СЭП и НЭП d_{12}/d_{22} и соответственно с энергиями отталкивания электронных пар на валентной оболочке U_{12} и U_{22} [13]. В [13] приведены зависимости валентных углов от отношения эффективных длин связей $R\left(\frac{r_1}{r_2}\right)$ для тетраэдрических соединений типа (НЭП)ЭХ₃, рассчитанных по функции

$$\sum_{ij} U_{ij} = \sum_{ij} a_n d_{ij}^{-n} = a_n X r^{-n}$$
(5),

для n=1, 6 и 12. Из них следует, что при приближении к правильному тетраэдру *R* увеличивается до единицы. В равновесном состоянии, когда отталкивания всех НЭП и СЭП выравниваются (при $\alpha=109.5^{\circ}$) *R*=1. Зависимости углов α от *R* в рассматриваемом диапазоне углов α (110÷95) при любом *n* прямолинейны. Сопоставление приведенных в [13] численных значений для 13соединений (ЭHlg₃) (Э=N,P,As,Sb; X=F,Cl,Br,I) для *n*=6, указывает на прямолинейную зависимость между R и α

$$R = -3.751 + 0.0434 \alpha$$

 $r = 0.999, \quad S_0 = \pm 0.008, \quad n = 13.$
(6)

Из сопоставления функций (1) и (6) следует, что изменение разности потенциалов ионизации ΔE и *R*, характеризующие относительные энергии отталкивания электронных пар на валентной оболочке, в соединениях (ЭHlg₃) прямо пропорциональны

$$\Delta E = E_i^{\mathcal{P}} - E_H^{\mathcal{P}} = -8.874 + 14.700R \tag{7}.$$

Зависимость (7) связывает параметры характеризующие относительные энергии НЭП. С одной стороны ΔE экспериментальное значение, с другой - R теоретически рассчитанная величина по формуле (5).

На рисунке прямая для триметилпроизводных ЭМе₃ (функция 4) расположена с меньшим углом наклона. Т.е. варьирование угла α на единицу приводит к меньшему изменению $\Delta E (\partial (\Delta E) / \partial \alpha)$ по сравнению с ЭHlg₃. Вместе с тем, для ряда ЭМе₃ абсолютные величины энергий $E_{\rm H}^{3}$ меньше (таблица1), а ΔE - больше.

Известно, что метильные заместители являются донорами по сравнению с галогенами. Согласно [12, 13] по модели ОЭПВО СЭП связи Э-Ме расположен к центральному атому ближе, чем в связи Э-Hlg. Более близкое расположение электронных доменов описываются функцией (5) с большим значением степени *n*. При жестком контакте $n \rightarrow \infty$. Поэтому можно предположить, что для рядов ЭМе₃, ЭPh₃, Э(SiH₃)₃, т.е. для

заместителей X четвертой группы периодической системы, и $ЭH_3$ для описания геометрии молекул в формуле (5) нужно использовать величину n>6, которая была использована в [13] для обсуждения рядов $ЭHlg_3$.

Для всех функций *R* от α , приведенные для ЭНlg₃ в [13], в диапазоне обсуждаемых углов α зависимости прямолинейны. При этом для фиксированного угла α увеличение значения степени *n* соответствует большему *R*, т.е. выталкивание НЭП от центрального атома Э увеличивается при переходе от ЭHlg₃ \rightarrow ЭМе₃. Вместе с тем величина изменения *R* при варьировании на единицу угла α ($\partial R/\partial \alpha$) при увеличении степени *n* в функции (5) уменьшается. Таким образом наблюдается полная аналогия между экспериментальной $\partial(\Delta E)/\partial \alpha$ и теоретической ($\partial R/\partial \alpha$) величинами.

Прямолинейные корреляции ΔE от *R* типа уравнения (7) будут наблюдаться для всех степеней *n*, у которых часть кривой в диапазоне углов 95÷110° имеет прямолинейную зависимость α от *R* [13]. Приведенные выше рассуждения свидетельствуют, что динамику изменений величины ΔE в различных рядах можно объяснить силами отталкивания электронных пар на валентной оболочке по формуле (5), а разную их зависимость от α увеличением степени *n* при переходе ЭHlg₃ к ЭMe₃.

Центральной точкой на графике зависимостей R от α является значение *R*, соответствующее углу α =109.5° [13]. При расчете по функции (5) для любого значения степени *n* при α =109.5° *R*=1 [13]. Т.е. взаимное отталкивание НЭП и СЭП будут одинаковы. Сами же прямые на функциональной зависимости, расположенные под разными углами (для неравных степеней *n*) показывают различную степень изменения СЭП при замене атомов X и Э и соответственно неодинаковые изменения углов α , которые определяется взаимными отталкиваниями СЭП с СЭП и СЭП с НЭП. Если предположение об изменении ΔE зависимостью (5) с различными

значениями степени *n* для соответствующих рядов правильно, то экспериментальные прямые 1 и 2 на рисунке должны пересекаться в точке, близкой к α =109.5°. Из рисунка следует, что эти прямые действительно пересекаются в области α ≈109.5°. Аналитическое решение двух уравнений 1 и 4 для рядов тригалогенидов и триметилпроизводных дает для точки пересечения ΔE =+5.89 эВ, α =109.6°.

Согласно представлениям квантово-химической теории валентности при варьировании угла α при центральном атоме, следует ожидать также изменения степени гибридизации *s*- и p- орбиталей [5]. Известно, что для интерпретации ДМ фосфинов, арсинов и аминов используют валентное состояние Э(t^2_{H3R} , *t*, *t*, *t*) [5]. Орбиталь t_{H3R} находят из требования ортогональности к орбиталям t, направленным по линиям связей между ядрами. Например, для фосфора

$$t_{\mu \eta n} = A(3s) + B(3p) ,$$

$$A^{2} = (1 + 2\cos\alpha)/(1 - \cos\alpha) , \quad B^{2} = 1 - A^{2} , \quad u_{3} A^{2} + B^{2} = 1$$

Процентное соотношение вкладов s- и p – орбиталей в гибридную $t^2_{\rm H > III}$ орбиталь, в зависимости от углов α в диапазоне 90-120⁰ варьируется от 0 до 100%. Если рассматривать разность $B^2(3p) - A^2(3s)$ как функцию от величины угла α , то в диапазоне углов $\alpha = 95$ -109.5° зависимость близка к прямой:

$$B^{2}(3p) - A^{2}(3s) = -7.19(101.91 - \alpha)$$

r = 0.997, S₀ = 3.145 (8).

Эта прямая аналогична уравнению (1). При этом $B^2 - A^2 = 0$ при $\alpha = 101.9^\circ$. Углы α при $\Delta E = 0$ и $B^2 - A^2 = 0$ в уравнениях (1) и (8) близки. Этот угол ($\alpha = 101.5^\circ$) соответствует максимальному значению дипольного момента $\mu_{\rm Hэп}$ при изменении гибридизации с участием s и р-орбиталей в соотношении 50/50% [5]. При этом из [13] углу 101.5° соответствует R = 0.65. Из сопоставления двух зависимостей $R(\alpha)$ и $B^2 - A^2 = f(\alpha)$ точки

где

при α =109.5° соответствуют равновесию электростатических отталкиваний *R*=1 и гибридной орбитали $t_{\rm Hэп}^2$ с 25/75% участием s и рорбиталей. В таблице 3 приведены параметры ΔE (для ЭHlg₃), *R*, B^2 - A^2 и B^2/A^2 при различных предельных углах α .

Таблица 3 - Сравнительные параметры ΔE , R, $B^2 - A^2$ и B^2/A^2 в зависимости от угла α .

α	ΔE , $3B$	$B^2 - A^2(\%)$	$R(r_1/r_2)$	B^2/A^2
90°	-6.60	-100	-	0
94°	-4,04	-60.8	~0.25	0.24
101.5°	0.74	0	0.65	1
109.5°	+5.89	+50	1	3
120°	+12.55	+100	$\rightarrow \infty$	∞

Из таблицы 3 следует, что для всех параметров наблюдается закономерное изменение величин от значений угла *а*.

Список литературы

1. Нефедов В.И., Вовна В.И. Электронная структура химических соединений. - М.: Наука, 1987. - 347 с.

2. Нефедов В.И., Вовна В.И. Электронная структура органических и элементоорганических соединений. - М.: Наука, 1989. - 200 с.

3. Зверев В.В., Китаев Ю.П. Фотоэлектронная спектроскопия органических соединений фосфора// Успехи химии. - 1977. - Т.46. - №9. - С.1515-1543.

4. Elbel B.S., Bergmann H., Enblin W. Photoelectron Spectra of the Trimethyl Compounds of the Group V Elements// J. Chem. Society Farad. Trans. II. - 1970. - V.70. - N²³. - P.555-559.

5. Зверев В.В., Бельский В.Е. Потенциалы ионизации и геометрия фосфинов// Докл. АН СССР. - 1978. - Т.241. - №6. - С.1367-1370.

6. Yoshikawa K., Hashimoto M., Morishima J. Photoelectron Spectroscopic Study of Cyclic Amines. The Relation between Ionization Potentials Basicities, and S Character of the Nitrogen Lone Pair Electrons// J. Am. Chem. Soc. - 1974. - V.96. - №1. - P.288-289.

7. B.G.Ramsey, F.A.WalkerJ. Linear Relationship between substituted Pyridine Lone Pair Vertical Isonization Potentials and pK_a . Am. Chem. Soc. - 1974. - V.96. N 10- P.3314 - 3316.

8. Tatzel G., Schrem H., Weidlein J. Schwingungsspektren, Kraftkonstanten und Elektrotransparenzen isoelektronischer Tetramethylverbindungen der III, IV und V Hauptgruppe// Spectrochimics Acta. - 1978. - V.34A. - № . - P.549 – 554.

9. Зверев В.В., Виллем Я.Я., Бельский В.Е., Китаев Ю.П. Фотоэлектронные спектры фосфорильных соединений// Изв. АН СССР. Сер. хим. - 1979. - №1. - С.84-89.

10. Полещук О.Х. Исследование электронной структуры галогенидов V_Aгруппы // Журн. неорг. химии. - 1985. - Т.30. - №12. - С.3016-3018.

11. Халитов Ф.Г. О взаимосвязи потенциалов ионизации и геометрической структуры некоторых молекул// Докл. АН СССР. - 1980. - Т.254. - №4.- С.934-938. (Докл. АН СССР. - 1981.- Т.258.- №1.-С.10).

12. Гиллеспи Р. Геометрия молекул. - М.: Мир, 1975. - С.278.

13. Киперт Д. Неорганическая стереохимия. - М.: Мир, 1985. - 280 с.

14. Molecular Structure and Dimensions/ Ed. by O.Kennard, Utrecht, Cambridge: Crystallogr. Data Center, 1972. - Vol.A1. - 571 p.

15. Краснов К.С., Филиппенко Н.В. и др. Молекулярные постоянные неорганических соединений. Л.: Химия, 1979. - 447.

16. Beagley B., Medwin A.R. Vibrational force fields and amplitudes, and zero-point average structures of $(CH_3)_3 Y$ molecules (Y = N, P,As, Sb, Bi). A combination of electron - diffraction and spectroscopic data// J.Mol. Struct. - 1977. - V.38. - P.229-238.

17. Beagley B., Medwin A.R. Vibrational force fields and amplitudes, and zero-point average structures of $(SiH_3)_3$ Y molecules (Y = P,As, Sb) and $(GeH_3)_3$ P// J.Mol. Struct. - 1977. - V.38. - P.239-244.

18. Hawley D.M., Ferguson G. The Stereochemistry of Some Organic Derivatives of Group V_B Elements.// J.Chem. Soc. - 1968. - A. - N9. - P.2059-2063.

19. Dtfgley B., Mcaloon K.T. The molecular structure of trimethyl bismuth.//J.Mol.Struct. - 1973. - V.17. - P.429-430.

20. Haaland A., Hougen J., Samdal S., Trmmel J. The Molecular Structure of Gaseous Bismuth Tricholoride Determined by Electron Diffraction// Acta Chem. Scand. - 1988. - A42.
- P.409-412

21. Humphries B.C.M., Walsh A.D., Warsop P.A. Absorption spectra of the hydrides, deuteriedes and halides of group 5 elements.// Disc. Farad. Soc. – 1963. - V.35. - P.148-157.

22. Potts .A.W., Price W.C. Photoelectron spectra and valence ahell orbital structures of groupes V and VI hidrides.// Proc. Roy. Soc. London. - 1972. A. - V.326. №1565- P.181-197.

23. Вилков Л.В., Мастрюкова В.С., Садова Н.И. Определение геометрического строения свободных молекул. Л.:Химия. 1978. С.228.

24. Зарипов Н.М., Наумов В.А., Тузова Л.Л. Электронографическое исследование строения молекулы триметилфосфита. // Докл. АН СССР. - 1974. - Т.218. - №5. С.1132-1135.

25. Чмутова Г.А. Электронная и пространственная структура некоторых ароматических производных элементов VI группы: Сб. /Строение и реакционная способность органических соединений. - М.: Наука, 1978. - С.227-258.

26. Glidwell B.C., Rankin D.W.H. et. al. Molecular Strucures of Digermyl Ether and Digermyl Sulphide in the Gas Phase.// J.Chem.Soc.- 1970A. V.2.-P.315-317

27. Almennigen A., Fernholt L., Seip H.M. The molecular structure of gaseouse (SiH₃)₂Se.// Acta Chem. Scand. - 1968. - V.22. №1- P.51-58.

28. Murdoch J.D., Rankin D.W.H. The molecular structure of digermylselenide in the gas phase// J/Mol/Struct. - 1971. - V.9. - P.17-23.

References

1. Nefedov V.I., Vovna V.I. Jelektronnaja struktura himicheskih soedinenij. - M.: Nauka, 1987. - 347 s.

2. Nefedov V.I., Vovna V.I. Jelektronnaja struktura organicheskih i jelementoorganicheskih soedinenij. - M.: Nauka, 1989. - 200 s.

3. Zverev V.V., Kitaev Ju.P. Fotojelektronnaja spektroskopija organicheskih soedinenij fosfora// Uspehi himii. - 1977. - T.46. - №9. - S.1515-1543.

4. Elbel B.S., Bergmann H., Enblin W. Photoelectron Spectra of the Trimethyl Compounds of the Group V Elements// J. Chem. Society Farad. Trans. II. - 1970. - V.70. - №3. - P.555-559.

5. Zverev V.V., Bel'skij V.E. Potencialy ionizacii i geometrija fosfinov// Dokl. AN SSSR. - 1978. - T.241. - №6. - S.1367-1370.

6. Yoshikawa K., Hashimoto M., Morishima J. Photoelectron Spectroscopic Study of Cyclic Amines. The Relation between Ionization Potentials Basicities, and S Character of the Nitrogen Lone Pair Electrons// J. Am. Chem. Soc. - 1974. - V.96. - №1. - P.288-289.

7. B.G.Ramsey, F.A.WalkerJ. Linear Relationship between substituted Pyridine Lone Pair Vertical Isonization Potentials and pKa. Am. Chem. Soc. - 1974. - V.96. №10- P.3314 -3316.

8. Tatzel G., Schrem H., Weidlein J. Schwingungsspektren, Kraftkonstanten und Elektrotransparenzen isoelektronischer Tetramethylverbindungen der III, IV und V Hauptgruppe// Spectrochimics Acta. - 1978. - V.34A. - № . - P.549 – 554.

9. Zverev V.V., Villem Ja.Ja., Bel'skij V.E., Kitaev Ju.P. Fotojelektronnye spektry fosforil'nyh soedinenij// Izv. AN SSSR. Ser. him. - 1979. - №1. - S.84-89.

10. Poleshhuk O.H. Issledovanie jelektronnoj struktury galogenidov VAgruppy // Zhurn. neorg. himii. - 1985. - T.30. - №12. - S.3016-3018.

11. Halitov F.G. O vzaimosvjazi potencialov ionizacii i geometricheskoj struktury nekotoryh molekul// Dokl. AN SSSR. - 1980. - T.254. - №4.- S.934-938. (Dokl. AN SSSR. - 1981.- T.258.- №1.-S.10).

12. Gillespi R. Geometrija molekul. - M.: Mir, 1975. - S.278.

13. Kipert D. Neorganicheskaja stereohimija. - M.: Mir, 1985. - 280 s.

14. Molecular Structure and Dimensions/ Ed. by O.Kennard, Utrecht, Cambridge: Crystallogr. Data Center, 1972. - Vol.A1. - 571 p.

15. Krasnov K.S., Filippenko N.V. i dr. Molekuljarnye postojannye neorganicheskih soedinenij. L.: Himija, 1979. - 447.

16. Beagley B., Medwin A.R. Vibrational force fields and amplitudes, and zero-point average structures of (CH3)3Y molecules (Y = N, P,As, Sb, Bi). A combination of electron - diffraction and spectroscopic data// J.Mol. Struct. - 1977. - V.38. - P.229-238.

17. Beagley B., Medwin A.R. Vibrational force fields and amplitudes, and zero-point average structures of (SiH3)3Y molecules (Y = P,As, Sb) and (GeH3)3P// J.Mol. Struct. - 1977. - V.38. - P.239-244.

18. Hawley D.M., Ferguson G. The Stereochemistry of Some Organic Derivatives of Group VB Elements.// J.Chem. Soc. - 1968. - A. - №9. - P.2059-2063.

19. Dtfgley B., Mcaloon K.T. The molecular structure of trimethyl bismuth.//J.Mol.Struct. - 1973. - V.17. - P.429-430.

20. Haaland A., Hougen J., Samdal S., Trmmel J. The Molecular Structure of Gaseous Bismuth Tricholoride Determined by Electron Diffraction// Acta Chem. Scand. - 1988. - A42. - P.409-412

21. Humphries B.C.M., Walsh A.D., Warsop P.A. Absorption spectra of the hydrides, deuteriedes and halides of group 5 elements.// Disc. Farad. Soc. – 1963. - V.35. - P.148-157.

Potts .A.W., Price W.C. Photoelectron spectra and valence ahell orbital structures of groupes V and VI hidrides.// Proc. Roy. Soc. London. - 1972. A. - V.326. №1565- P.181-197.
 Vilkov L.V., Mastrjukova V.S.,Sadova N.I. Opredelenie geometricheskogo stroenija

svobodnyh molekul. L.:Himija. 1978. S.228.

24. Zaripov N.M., Naumov V.A., Tuzova L.L. Jelektronograficheskoe issledovanie

stroenija molekuly trimetilfosfita. // Dokl. AN SSSR. - 1974. - T.218. - №5. S.1132-1135.

25. Chmutova G.A. Jelektronnaja i prostranstvennaja struktura nekotoryh aromaticheskih proizvodnyh jelementov VI gruppy: Sb. /Stroenie i reakcionnaja sposobnost' organicheskih soedinenij. - M.: Nauka, 1978. - S.227-258.

26. Glidwell B.C., Rankin D.W.H. et. al. Molecular Strucures of Digermyl Ether and Digermyl Sulphide in the Gas Phase.// J.Chem.Soc.- 1970A. V.2.-P.315-317

27. Almennigen A., Fernholt L., Seip H.M. The molecular structure of gaseouse (SiH3)2Se.// Acta Chem. Scand. - 1968. - V.22. №1- P.51-58.

28. Murdoch J.D., Rankin D.W.H. The molecular structure of digermylselenide in the gas phase// J/Mol/Struct. - 1971. - V.9. - P.17-23.