В данной статье, являющейся продолжением работы [8] предлагается моделирование, и исследование электроконвекции в слое раствора прилегающей к катионообменной мембране камеры обессоливания электродиализного аппарата (ЭДА).

Экспериментально доказано [4], что поверхность мембраны является геометрически неоднородной. Кроме того, в настоящее время ведутся исследования по целенаправленной модификации поверхности мембраны и ее влияния на массоперенос. Установлено, что в зависимости от модифицирующего агента и микроструктуры мембраны наблюдается увеличение или уменьшение скорости массопереноса [1]. Теоретически и экспериментально установлено важная роль электроконвекции для...
лучшего понимания механизмов сверхпредельного тока и интенсификации массопереноса в электродиализных аппаратах [2,3]. В связи с этим возникает проблема исследования взаимодействия электроконвекции и геометрической неоднородности поверхности мембраны.

1. Постановка задачи

Будем моделировать геометрическую неоднородность поверхности катионнообменной мембраны треугольными выступами и кавернами.

Рисунок 1 – Исследуемая область: а) мембрана с треугольными выступами и прилегающий слой раствора, б) мембрана с треугольными кавернами и прилегающий слой раствора. Раствор прокачивается слева направо с некоторой линейной скоростью V_0.

Ставится задача оценки влияния электроконвекции на процесс переноса ионов в гладких каналах, каналах с треугольными выступами и кавернами, путем составления и исследования двумерной математической модели нестационарного переноса бинарного электролита в слое раствора, прилегающей к катионнообменной мембране.

Пусть H и L — ширина и длина рассматриваемой области, соответственно, V_o — начальная (линейная) скорость прокачивания раствора, $x = 0$ — соответствует условной межфазной границе мембрана/раствор, $x = H$ — внешняя («свободная») граница раствора, $y = 0$ — соответствует входу, а $y = L$ — выходу (рис. 1).

$$\vec{J}_i = \frac{F}{RT} z_i D_i C_i \vec{E} - D_i \nabla C_i + C_i \vec{V}, \quad i = 1, 2,$$

(1)

$$\frac{\partial C_i}{\partial t} = -\text{div} \vec{J}_i, \quad i = 1, 2,$$

(2)

$$\varepsilon_o \Delta \varphi = -F (z_1 C_1 + z_2 C_2),$$

(3)

$$\vec{I} = F (z_1 \vec{J}_1 + z_2 \vec{J}_2),$$

(4)

$$\frac{\partial \vec{V}}{\partial t} + (\vec{V} \nabla) \vec{V} = -\frac{1}{\rho_o} \nabla P + \nu \Delta \vec{V} + \frac{1}{\rho_o} \vec{f},$$

(5)

$$\text{div}(\vec{V}) = 0,$$

(6)

где \vec{V} — градиент, Δ — оператор Лапласа, $\vec{f} = \varepsilon_o \Delta \varphi \vec{V}$ — плотность силы электрического поля, \vec{V} — скорость течения раствора электролита, ρ_o — характерная плотность раствора, P — давление, C_1, C_2 — концентрации катионов и анионов в растворе, соответственно, z_1, z_2 — зарядовые числа катионов и анионов, D_1, D_2 — коэффициенты диффузии катионов и анионов, φ — потенциал электрического поля, ε_o — диэлектрическая проницаемость электролита, F — постоянная Фарадея, R — газовая постоянная.

постоянная, T — абсолютная температура, t — время, ν — коэффициенты кинематической вязкости. При этом p, \vec{V}, φ, C_1, C_2 — неизвестные функции, зависящие от времени t и координат x, y. В системе уравнений (1)-(6) уравнения (1)-(4) описывают электрохимические поля, а уравнения Навье-Стокса (5), (6) описывают движение раствора в приближении Буссинеска под действием пространственной электрической силы. Электромембранные системы используются, как правило, в двух разных режимах работы: потенциостатическом режиме, когда постоянным поддерживается падение потенциала в цепи и гальваностатическом режиме, когда постоянным поддерживается ток в цепи. В этой работе мы будем рассматривать потенциостатический режим, которому соответствует условие:

$$\varphi(H, y, t) - \varphi(0, y, t) = d_{\varphi} = const,$$

(7)

означающее, что величина падения потенциала в рассматриваемой области постоянна.

2. Математическая постановка задачи

После ряда преобразований уравнения (1)-(6) записываются в виде

$$\frac{\partial \vec{V}}{\partial t} + (\vec{V} \nabla) \vec{V} = -\frac{L}{\rho_0} \nabla P + \nu \Delta \vec{V} + \frac{1}{\rho_0} \varepsilon_0 \Delta \varphi \nabla \varphi,$$

(8)

$$\text{div}(\vec{V}) = 0,$$

(9)

$$\frac{\partial C_1}{\partial t} = -\text{div} \left(-\frac{F}{RT} z_1 D_1 C_1 \nabla \varphi - D_1 \nabla C_1 + C_1 \vec{V} \right),$$

(10)

$$\frac{\partial C_2}{\partial t} = -\text{div} \left(-\frac{F}{RT} z_2 D_2 C_2 \nabla \varphi - D_2 \nabla C_2 + C_2 \vec{V} \right),$$

(11)

$$\Delta \varphi = -\frac{F}{\varepsilon_0} (z_1 C_1 + z_2 C_2),$$

(12)

Наряду с условием (7) будем использовать следующие граничные условия:

1) На поверхности катионнообменной мембраны \(x=0, y \in [0, L], t \geq 0 \) будем считать граничную концентрацию катионов равной фиксированному заряду внутри мембраны:

\[
C_r(0, y, t) = C_{km}
\]
(13)

Кроме того, предположим катионнообменную мембрану идеально селективной, т.е. непроницаемой для анионов:

\[
\left(\frac{\partial C_2}{\partial x} + \frac{F}{RT} z_2 C_2 \frac{\partial \varphi}{\partial x} \right)(0, y, t) = 0.
\]
(14)

Для скорости используем условие прилипания:

\[
V_v(0, y, t) = 0, \quad V_r(0, y, t) = 0.
\]
(15)

2) На внешней границе слоя раствора, \(x=H, y \in [0, L], t \geq 0 \), будем считать концентрацию ионов постоянной:

\[
C_i(H, y, t) = C_{i,0}, \quad i = 1,2
\]
(16)

Для скорости течения раствора будем использовать условие исчезновения нормальной скорости и вязкого напряжения на внешнем <<свободном>> краю слоя раствора:

\[
V_v(H, y, t) = 0, \quad \frac{\partial V_v(H, y, t)}{\partial x} = 0.
\]
(17)

3) На входе в рассматриваемую область \(y=0, x \in [0, H], t \geq 0 \) будем считать, что концентрации, потенциал, скорость течения раствора распределены линейно, причем их распределение соответствует предельной плотности тока и при \(x \in (0, H] \) выполняется условие электронейтральности (\((z_1 C_1(x,0, t) + z_2 C_2(x,0, t)) = 0 \)):

\[
C_i(x,0, t) = \frac{C_{i,0} x}{H}, \quad i = 1,2, \quad \varphi(x,0, t) = d_p \left(1 - \frac{x}{H} \right), \quad V_v(x,0, t) = 0, \quad V_r(x,0, t) = V_a \frac{x}{H}.
\]
(18)
Как следует из (17) и (18) граничные условия в точке \(x=0, y=0 \) не согласованы. Однако при численном решении это достаточно быстро сглаживается.

4) На выходе из рассматриваемой области \(y=L, x \in [0,H], t \geq 0 \) будем использовать «мягкие» условия на концентрации и потенциал:

\[
\frac{\partial C_i(x,L,t)}{\partial y} = 0, \quad i = 1,2, \quad \frac{\partial \phi(x,L,t)}{\partial y} = 0, \quad P(x,L,t) = P_0. \tag{19}
\]

5) Начальные условия при \(t = 0 \) примем согласованными с остальными граничными условиями:

\[
C_i(x,y,0) = C_{i,0}, \quad i = 1,2, \quad \phi(x,y,0) = d_\phi \frac{x}{H}, \quad V_x(x,y,0) = 0, \quad V_y(x,y,0) = V_0 \frac{x}{H}. \tag{20}
\]

Нами были проведены численные эксперименты для раствора NaCl в широком спектре таких параметров, как начальная концентрация, скорость прокачивания раствора, межмембранные расстояние, длина, скачок электрического потенциала и определены основные закономерности распределения электрохимических (концентрации, напряженности электрического поля, и т.д.) и гидродинамических полей. Ниже представлены некоторые результаты численных экспериментов при следующих входных параметрах: ширина слоя раствора \(H = 0.25 \text{ мм} \), длина \(L = 2 \text{ мм} \), начальная скорость прокачивания раствора \(V_0 = 10^{-3} \text{ м/с} \) или \(V_0 = 10^{-4} \text{ м/с} \), начальная концентрация раствора \(C_0 = 10 \text{ моль/м}^3 \), температура раствора \(T = 293 \text{ К} \), начальная плотность раствора \(\rho_0 = 1002.5 \text{ кг/м}^3 \), коэффициент кинематической вязкости \(\nu = 1.006 \cdot 10^{-4} \text{ м}^2/\text{с} \), коэффициент диффузии катиона и аниона, соответственно, \(D_1 = 1.33 \cdot 10^{-9} \text{ м}^2/\text{с} \), \(D_2 = 2.05 \cdot 10^{-7} \text{ м}^2/\text{с} \), разность потенциалов электрического поля в канале \(d_\phi = -0.45 \text{ В} \).

3. Основные закономерности процесса электроконвекции

Рассмотрим закономерности изменение электрохимических и гидродинамических полей в зависимости от вида границы, с учетом и без учета электроконвекции.

3.1. Изменение полей концентраций, потенциала и скорости.

Рисунок 2 – Поля концентраций катионов, рассчитанные спустя 100 секунд с момента включения электрического тока при скорости прокачивания раствора $V_r = 10^{-3}$ м/с и скачке потенциала $d_\phi = -0.45$ В. а) гладкий канал, б) канал с кавернами и в) со вставками без учета электроконвекции и г), д), е) с учетом электроконвекции, соответственно.
В случае мембран с гладкой поверхностью без учета электроконвекции концентрация катионов практически линейно убывает почти до нуля и только в окрестности мембраны увеличивается и удовлетворяет граничному условию (рис. 2 а, б, в), при этом концентрация анионов линейно уменьшается практически до нуля. Расчеты показывают, что поле электрического потенциала и линии тока жидкости практически не возмущены, течение является безвихревым.

Линии тока раствора электролита в случае мембран с кавернами и с выступами без учета электроконвекции слегка искривлены и возникают вихри соразмерные размерам неоднородности. Такое поведение концентраций качественно соответствуют допредельному и предельному режимам.

В случае учета электроконвекции при тех же условиях, образуется множество периодичных парных вихрей, которые занимают всю область при скорости прокачки \(V_0 = 10^{-3} \text{ м/с} \) (рис. 3), профили концентраций катионов (рис.2 г, д, е) и анионов, а также электрического потенциала имеют периодические искривления, связанные с периодической структурой течения раствора.

Рисунок 3 – Линии тока раствора электролита, рассчитанные спустя 100 секунд с момента включения электрического тока при скорости прокачивания раствора $V_o = 10^{-4}$ м/с и скачке потенциала $d_o = -0.45$ В. а) гладкий канал, б) канал с кавернами и в) со вставками с учетом электроконвекции, соответственно.

Рисунок 4 – Линии тока раствора электролита, рассчитанные спустя 100 секунд с момента включения электрического тока при скорости прокачивания раствора $V_o = 10^{-4}$ м/с и скачке потенциала $d_o = -0.45$ В. а) гладкий канал, б) канал с кавернами и в) со вставками с учетом электроконвекции, соответственно.
При увеличении скорости прокачки до $V_o = 10^{-3}$ м/с размеры вихрей уменьшаются. Визуально область завихренности кажется большим в случае мембран с кавернами, и соответственно, интенсивность массопереноса больше. Однако для более точной оценки влияния геометрической неоднородности поверхности мембраны на перенос ионов соли необходимо использовать вольтамперную характеристику.

3.2. Вольтамперная характеристика

Сравнение вольтамперных характеристик (рис. 5) показывает, что электроконвекция во всех трех случаях приводит к росту тока над предельным значением.

Рисунок 5 – Вольтамперные характеристики для области с гладкой мембраной, с мембраной с кавернами и выступами с учетом и без электроконвекции при скорости прокачивания раствора $V_o = 10^{-3}$ м/с

При этом в случае отсутствия электроконвекция плотность тока для гладкой границы больше, чем для негладких. При наличии

электроконвекции наибольшая плотность достигается для мембран с кавернами.

Для мембран с выступами плотность тока меньше, чем для гладкой мембраны (кроме участка от 0.25 до 0.35 В при электроконвекции) и мембраны с кавернами. Возможно, это вызвано эффектом экранирования, т.е. образования застойных зон и искривление линий тока вследствие огибания выступов.

Из проведенного выше исследования можно сделать вывод, что при проведении процесса обессоливания в ЭДА, при больших падениях потенциала, модификация поверхности мембраны, особенно с образованием каверн, перспективно для интенсификации процесса, вследствие возникновения и развития электроконвекции.

ПРИМЕЧАНИЯ

5. Лопаткова Г.Ю. Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпределных токовых режимах. Дис. … канд. хим. наук. Краснодар. - 2006. -180 с.