УДК 634.8 + 631.52 + 581.167

НОВАЦИИ ВИНОГРАДАРСТВА РОССИИ. 3. КЛОНОВАЯ СЕЛЕКЦИЯ ВИНОГРАДА

Трошин Леонид Петрович д. б. н., профессор Кубанский государственный аграрный университет, Краснодар, Россия

Музыченко Александр Борисович директор *OOO «Фанагория-Агро» Темрюкского района Краснодарского края*

Мисливский Анатолий Иванович и.о. доцента директор 3AO «Победа» Темрюкского района Краснодарского края, Россия

Клоновая селекция обычно районированных сортов винограда ныне производится во всех странах развитого виноградарства и этим путем достигается повышения не только уровня урожайности, но и качества сырья. Процесс клоновой селекции затруднен многолетним выяснением наличия изменений генотипической среды сорта. Для облегчения отбора высокопродуктивного протоклона селектируемого сорта необходимо использование самых современных методов генетического маркирования плюс-трансгрессий и отбора измененных по нуклеотидному составу растений с комплексом высоких значений ценных количественных признаков

Ключевые слова: ВИНОГРАД, СОРТ, КЛОН, МОДИФИКАЦИОННАЯ ИЗМЕНЧИВОСТЬ, ПОПУЛЯЦИЯ, ЛИСТ, МОРФОЛОГИЧЕСКИЕ ПРИЗНАКИ, БИОМЕТРИЧЕСКИЙ АНАЛИЗ

UDC 634.8 + 631.52 + 581.167

INNOVATIONS OF VITICULTURE IN RUSSIA. 3. CLONAL SELECTION OF GRAPES

Troshin Leonid Petrovich Dr. Sci. Biol., professor Kuban State Agrarian University, Krasnodar, Russia

Muzychenko Aleksandr Borisovich director of "Fanagorija-Agro" Open Company of Temrjuk area of Krasnodar Region, Russia

Mislivskiy Anatoliy Ivanovich i.A. senior lecturer director of "Pobeda" Joint-Stock Company of Temrjuk area of Krasnodar Region, Russia

Clone selection of usually zoned grades of grapes nowadays is made in all countries of the developed wine growing and this way increases not only productivity level, but also quality of raw materials. Process of clone selection is complicated by long-term finding-out of presence of changes of genotypical grade environment. For simplification of selection of a highly productive protoclone of selected grades use of the advanced methods of genetic marking of pluses-transgressions and selection of nucleotidically changed plants with a complex of high values of valuable quantitative signs is necessary

Keywords: GRAPE, VARIETY, CLONE, MODIFICATION VARIABILITY, POPULATION, LEAVE, MORPHOLOGICAL CHARACTERISTICS, BIOMETRICAL ANALYZE

Введение

Клоновая селекция рекомендуемых, или районированных, сортов винограда ныне производится во всех странах развитого виноградарства и этим путем достигается повышения не только уровня урожайности, но и качества сырья. Достаточно сказать, что в ФРГ, занимающей самые передовые позиции по урожайности винограда в Европе, только по одному

сорту Рислинг запантентовано более 450 клонов и микрорайонировано 80 [8]. Причем, микрорайонированные клоны сортов обеспечивают максимально возможную продуктивность генотипов при кондиционности сырья и стабильности экспрессии количественных признаков и свойств именно в месте их отбора [13, 17-20].

Клоновой селекцией районированных столовых, универсальных и технических сортов винограда в России ныне занимаются сотрудники Всероссийского НИИВиВ им. Я.И. Потапенко, Дагестанской ОССВиО, а на Кубани — Северо-Кавказского НИИСиВ, Анапской ЗОСВиВ и Кубанского госагроуниверситета. При этом отборы клонов ими ведутся в различных почвенно-климатических зонах РФ и Кубани [23-25].

Материал и методы исследований

В Темрюкской подзоне Анапо-Таманской зоны Краснодарского края селекционная работа проводится Кубанским госагроуниверситетом на девяти технических сортах винограда: Каберне-Совиньон, Мерло, Пино нуар (черный), Рислинг (рейнский) и Совиньон (белый), произрастающих в ООО «Фанагория-Агро», Клерет белый, Мускат белый, Саперави и Шардоне, произрастающих в ЗАО «Победа», с целью повышения продуктивности будущих производственных насаждений этих хозяйств [5-8, 10, 20, 22].

Задачами исследований являются: ампелографический скрининг насаждений винограда перечисленных выше сортов, отбор положительных по количественным признакам кустов, интегральная оценка протоклонов.

¹ Скрининг – массовое обследование виноградников с целью выявления кустов винограда, отличающихся комплексом биолого-хозяйственных признаков и свойств согласно селекционной модели улучшения сорта.

Насаждения изучаемых сортов 1998-2000 гг. посадки, схема размещения кустов 3,0 х 1,5-2,0 м, форма кустов – Гюйо. Ведение прироста – вертикальная шпалера. Культура винограда – неукрывная.

В период вегетации по всем селектируемым сортам отбирались визуально трансгрессивные кусты, выделяющиеся умеренным приростом, отсутствием визуальных повреждений вредителями и поражений болезнями, высокой урожайностью, с типичными по форме и сложению, но увеличенными по размеру гроздями и ягодами.

Кусты были отмечены этикетками (бирками).

В период исследований на них, по общепринятым в виноградарстве методикам, были проведены следующие учеты, анализы и наблюдения [1, 9, 12, 14, 17, 21]:

- учет количества развившихся побегов, в том числе плодоносных и бесплодных;
 - расчет коэффициентов плодоношения и плодоносности;
 - учет урожая;
- морфометрия листьев (ДЧ длина черешка, см; ДЛП длина листовой пластинки, см; ШЛП ширина листовой пластинки, см; ДСЖ длина срединной жилки, см; ДВБЖ длина верхней боковой жилки, см; ДНБЖ длина нижней боковой жилки, см; ВДР верхнее добухтовое расстояние, см; НДР нижнее добухтовое расстояние, см; углы альфа α , бета β и гамма, γ в градусах);
- биометрическая обработка полученного цифрового материала методами вариационного анализа и бутстрепа, многомерным методом D_0 проведена на ПК кафедры виноградарства КубГАУ [16, 18, 26].

Результаты исследований

Клоновое улучшение сортов винограда значительно повышается при условии предварительного проведения на виноградниках массовой и фитосанитарной селекции по положительным или отрицательным признакам [7, 16].

В ООО «Фанагория-Агро» Темрюкского района, являющимся одним из передовых виноградарских хозяйств России, традиционно перед заготовкой черенков с целью производства из них привитого посадочного материала осуществляется массовая селекция по отрицательным признакам.

В предшествующий период исследований (2004—2007 гг.) нами совместно с руководителями и агрономами-технологами ООО «Фанагория-Агро» И.Н. Василевским, А.Б. Музыченко, Н.Б. Морозом, В.Н. Спасибенко и П.В. Курило на всех пяти сортах было проведено визуальное обследование вегетирующих виноградных растений, выделены блоки высокоурожайных с хорошим приростом и отсутствием вирусных и бактериальных заболеваний кустов, точечно покрашены масляной краской штамбы, а в период сбора урожая подсчитано число гроздей с определением их общей весовой массы.

Урожай лучших кустов ежегодно передавался в Центр виноделия Северо-Кавказского ЗНИИСиВ (руководитель проф. Т.И. Гугучкина) для приготовления из него образцов столовых вин. После трехлетней кусты технологической оценки самые выдающиеся аттестованы протоклонами. В этом же Центре проводился биохимический анализ качества не только сусла протоклонов, НО приготовленных И виноматериалов [3, 7-8].

Учитывая общебиологические взаимосвязанности всех важнейших биолого-хозяйственных количественных признаков винограда, хорошо освещенные в опубликованных работах [11, 15-16], которые дают реальное представление о компенсационных эффектах саморегулирующейся

системы производства сырья и свидетельствуют о наличии плейотропных эффектов полигенов, их мы использовали при отборе высокопродуктивных протоклонов. Для этого был привлечен многомерный метод выделения "средних" и "крайних" фенотипов по совокупности количественных признаков [15-16].

При этом по соответствующей компьютерной программе был рассчитан показатель типичности D_0 – расстояние Махаланобиса до среднепопуляционных значений для каждого куста по всем учтенным биолого-хозяйственным признакам [18-19].

Далее проводилось ранжирование кустов по порядку убывания расстояния Махаланобиса. При этом кусты с наименьшим показателем расстояния ("средние" фенотипы) являлись наиболее типичными для близким данной популяции И значение ИХ показателей среднепопуляционному. Кусты с максимальным значением расстояния ("крайние" фенотипы) представляли собой растения с показателями, значительно отличающимися от среднепопуляционных, причем как в положительную, так и в отрицательную сторону. Именно они называются плюс- и минус-трансгрессиями с высокой долей вероятности быть по генотипу мутантными растениями.

Поскольку плюс-трансгрессии представляют хозяйственную ценность, они в свое время были нами названы протоклонами – родоначальниками клонов [16].

При условии вегетативного размножения протоклона его потомство считается однородным, а совокупность размноженных генотипически однородных растений называется клоном, или изогенной популяцией.

С теоретической точки зрения экспрессивность качественных и количественных признаков клонового потомства должна повторяться, т.е. совпадать с их эспрессивностью протоклона. Возникающие несовпадения

вызываются интерактивным взаимодействием «генотип-среда», обусловленным влиянием внешней среды.

В 2008 г. в ООО «Фанагория-Агро» по сортам Каберне-Совиньон, Мерло, Пино черный, Рислинг и Совиньон белый после трехлетней ступенчатой селекции в 2005–2007 гг. было отобрано по 10 высокопродуктивных кустов. В 2008 г. по каждому кусту был проведен ампелографический скрининг, результаты которого частично, в качестве примера, отражены в таблице 1.

Таблица 1. – Агрономические признаки сорта Каберне-Совиньон, 2008 г.

					1				1	1
Номер		Нагрузі	ка куста	l	Аг	робиол показ	огическ атели	сие	Macca	Урожай
куста	глазками	побегами	побегами	соцветиями	глазков, %	побегов, %	плодоношения	плодоносности	грозди, г	куста, кг
52–23	59	26	18	31	0,51	69,2	1,19	1,72	78,3	2,43
52–18	37	12	9	13	0,32	75	1,08	1,44	200,0	2,60
53–29	47	23	12	21	0,49	52,2	0,91	1,75	80,0	1,68
54-04	43	23	17	26	0,6	73,9	1,13	1,53	90,9	2,36
54–12	37	12	10	22	0,38	83,3	1,83	2,20	76,2	1,68
54–17	36	15	9	16	0,42	60	1,06	1,78	70,6	1,13
54–18	60	25	22	38	0,45	88	1,52	1,73	120,0	4,56
55–08	56	31	24	39	0,57	77,4	1,26	1,62	146,3	5,71
60–03	54	29	18	29	0,59	62	1,00	1,61	69,6	2,02
60–13	53	22	18	30	0,45	81,8	1,36	1,67	190,0	5,70

Сред-	48,2	21,8	15,7	25,6	0,48	72,3	1,23	1,71	112,2	2,99
ние										

Как (см. табл. 1), следовало ожидать интерактивные взаимодействия генотипов отобранных в предыдущие годы кустов под влиянием антропогенных, биотических и абиотических факторов внесли в относительную однородность количественных показателей ИХ соответствующую реакцию, что привело к разнообразию совокупности по каждому изучаемому признаку. В сравнении с производственным показателем урожайности сорта Каберне-Совиньон (83,2 ц/га) выделенная группа кустов имеет расчетную урожайность 99,6 ц/га – в 1,2 раза выше, а куст № 55-08 - 190,1 ц/га: в 2,3 раза выше.

Помимо ампелографического скрининга биолого-хозяйственных признаков выделенных кустов сорта Каберне-Совиньон проведена морфометрия 11 признаков 10 листьев этих же кустов, отобранных в 2005—2007 гг. (рис. 1-10).

Результаты измерений листьев сорта приведены в таблице 2.

Рис. 1. Лист куста № 52-23 сорта Каберне-Совиньон, 2008 г.

Рис. 2. Лист куста № 52-18 сорта Каберне-Совиньон, 2008 г.

Рис. 3. Лист куста № 53-29 сорта Каберне-Совиньон, 2008 г.

Рис. 4. Лист куста № 54-04 сорта Каберне-Совиньон, 2008 г.

Рис. 5. Лист куста № 54-12 сорта Каберне-Совиньон, 2008 г.

Рис. 6. Лист куста № 54-17 сорта Каберне-Совиньон, 2008 г.

Рис. 7. Лист куста № 54-18 сорта Каберне-Совиньон, 2008 г.

Рис. 8. Лист куста № 55-08 сорта Каберне-Совиньон, 2008 г.

Рис. 9. Лист куста № 60-03 сорта Каберне-Совиньон, 2008 г.

 $\underline{http://ej.kubagro.ru/2009/10/pdf/08.pdf}$

Рис. 10. Лист куста № 60-13 сорта Каберне-Совиньон, 2008 г.

Таблица 2. — Морфометрия 10 листьев выделенных 10 кустов сорта Каберне-Совиньон, 2008 г.

Ряд,					Приз	наки ли	ста				
куст	ДЧ	ДЛП	ШЛП	ДСЖ	ДВБЖ	ДНБЖ	ВДР	НДР	α	β	γ
1	2	3	4	5	6	7	8	9	10	11	12
52-23	101	147	140	108	96	62	44	48	52	110	139
	108	142	135	95	83	70	27	29	52	104	153
	81	145	137	94	93	68	37	35	53	105	145
	98	120	118	85	84	61	32	28	52	101	133
	108	152	149	101	93	75	36	37	61	115	154
	117	146	140	96	91	70	37	41	54	106	151
	102	153	153	102	93	71	32	37	60	117	163
	80	134	117	89	78	51	28	26	53	110	165
	104	155	140	110	92	71	41	48	54	116	153
	98	155	142	104	95	73	40	36	54	109	156
52-18	103	149	142	110	98	64	46	50	54	112	141
	110	144	137	97	85	72	29	31	53	106	155
	83	147	139	96	95	70	39	37	55	107	147
	100	122	120	87	86	63	34	30	54	103	135
	110	154	151	103	95	77	38	39	63	117	156

		1		ı	ı	ı	1			ı	1
	119	148	142	98	93	72	39	43	56	108	153
	104	155	153	104	95	52	34	39	62	119	165
	82	136	119	91	79	73	30	28	55	112	167
	106	157	141	112	94	76	43	50	56	118	155
	100	156	144	107	97	75	42	38	53	111	158
53-29	99	145	138	106	94	60	42	46	50	109	137
	106	140	133	93	81	68	25	27	52	102	151
	79	143	135	92	91	66	35	33	51	103	143
	96	118	116	83	82	59	30	26	51	99	131
	106	150	147	99	91	73	34	35	59	113	152
	115	144	138	94	89	68	35	39	52	104	149
	100	151	151	100	91	69	30	35	58	115	161
	78	132	115	87	76	49	26	24	51	108	163
	102	154	138	98	90	67	37	46	52	114	151
	96	151	139	102	93	71	38	34	54	107	154
54-04	117	156	157	106	100	73	43	39	59	115	156
	112	141	132	96	90	78	22	34	52	106	153
	104	149	132	105	92	55	36	33	55	109	151
	101	142	140	100	93	62	33	32	59	110	150
	100	134	121	97	83	71	34	33	56	111	161
	109	142	135	113	90	60	28	28	53	104	150

	110	165	154	118	101	64	37	29	56	108	148
	79	138	128	96	87	71	40	31	52	101	154
	80	154	145	109	98	56	30	28	50	116	156
	92	146	134	105	87	77	33	33	54	105	144
54-12	88	157	143	99	101	78	40	54	64	116	159
	97	176	157	121	103	80	35	37	62	119	151
	86	143	126	100	93	68	34	30	53	100	142
	80	147	136	98	90	66	32	31	57	113	158
	104	162	154	110	103	73	38	36	58	114	161
	97	149	133	106	76	67	34	31	65	113	155
	100	175	157	117	111	75	41	33	54	107	154
	78	130	119	95	78	57	33	34	49	100	142
	100	154	147	105	93	70	34	31	60	118	160
	95	136	131	87	86	65	26	29	61	123	172
54-17	97	185	186	124	124	77	28	31	70	126	170
	110	163	166	117	110	78	35	38	58	112	156
	101	141	123	103	80	55	38	39	47	106	151
	104	160	150	110	96	67	40	40	62	117	162
	90	140	138	93	91	62	35	31	47	94	150
	104	170	172	114	109	85	37	34	64	113	153
	100	151	135	115	84	63	45	36	35	115	164

	108	163	142	111	94	66	38	36	59	114	170
	134	191	174	134	117	83	42	36	60	109	157
	93	131	134	82	89	63	23	24	59	123	172
54-18	101	147	140	108	96	62	44	48	52	110	139
	108	142	135	95	83	70	27	29	52	104	153
	103	149	142	110	98	64	46	50	54	112	141
	110	144	137	97	85	72	29	31	53	106	155
	99	145	138	106	94	60	42	46	50	109	137
	106	140	133	93	81	68	25	27	52	102	151
	117	156	157	106	100	73	43	39	59	115	156
	112	141	132	96	90	78	22	34	52	106	153
	88	157	143	99	101	78	40	54	64	116	159
	97	176	157	121	103	80	35	37	62	119	151
55-08	81	145	137	94	93	68	37	35	53	105	145
	98	120	118	85	84	61	32	28	52	101	133
	83	147	139	96	95	70	39	37	55	107	147
	100	122	120	87	86	63	34	30	54	103	135
	79	143	135	92	91	66	35	33	51	103	143
	96	118	116	83	82	59	30	26	51	99	131
	104	149	132	105	92	55	36	33	55	109	151
	101	142	140	100	93	62	33	32	59	110	150

	86	143	126	100	93	68	34	30	53	100	142
	80	147	136	98	90	66	32	31	57	113	158
60-03	108	152	149	101	93	75	36	37	61	115	154
	117	146	140	96	91	70	37	41	54	106	151
	110	154	151	103	95	77	38	39	63	117	156
	119	148	142	98	93	72	39	43	59	108	153
	106	150	147	99	91	73	34	35	52	113	152
	115	144	138	94	89	68	35	39	56	104	149
	100	134	121	97	83	71	34	33	53	111	161
	109	142	135	113	90	60	28	28	58	104	150
	104	162	154	110	103	73	38	36	65	114	161
	97	149	133	106	76	67	34	31	54	113	155
60-13	104	155	140	110	92	71	41	48	54	116	153
	98	155	142	104	95	73	40	36	53	109	156
	106	157	141	112	94	76	43	50	56	118	155
	100	156	144	107	97	75	42	38	53	111	158
	102	154	138	98	90	67	37	46	52	114	151
	96	151	139	102	93	71	38	34	54	107	154
	80	154	145	109	98	56	30	28	50	116	156
	92	146	134	105	87	77	33	33	54	105	144
	100	154	147	105	93	70	34	31	60	118	160

95 136 131 87 86 65 26 29 61	172	123	61	29	26	65	86	87	131	136	95		
--	-----	-----	----	----	----	----	----	----	-----	-----	----	--	--

Представленные в таблице 2 исходные морфометрические данные листьев выделенных кустов сорта Каберне-Совиньон проанализированы вариационным и разностным методами и получены следующие результаты (табл. 3 и 4).

Таблица 3. – Результаты вариационного анализа 10 листьев выделенных 10 кустов сорта Каберне-Совиньон.

	ДЧ	ДЛП	ШЛП	ДСЖ	ДВБЖ	ДНБЖ	ВДР	НДР	α	β	γ
Куст № 52-23 Среднее	99,7	144,9	137,1	98,4	89,8	67,2	35,4	36,5	54,5	109,3	151,2
Стандартная ошибка	3,7	3,5	3,7	2,5	1,9	2,3	1,8	2,4	1,0	1,7	3,1
Стандартное отклонение	11,58	10,92	11,63	8,04	5,98	7,21	5,58	7,65	3,27	5,42	9,92
Дисперсия выборки	134,01	119,21	135,21	64,71	35,73	51,96	31,16	58,50	10,72	29,34	98,40
Эксцесс	0,19	2,21	0,21	-0,77	-0,03	1,84	-0,93	-0,77	1,03	-1,15	-0,07
Асимметричность	-0,70	-1,47	-0,81	-0,18	-1,08	-1,41	-0,13	0,29	1,53	0,09	-0,52
Интервал	37	35	36	25	18	24	17	22	9	16	32
Минимум	80	120	117	85	78	51	27	26	52	101	133
Максимум	117	155	153	110	96	75	44	48	61	117	165
Сумма	997	1449	1371	984	898	672	354	365	545	1093	1512
Куст № 52-18											
Среднее	101,7	146,8	138,8	100,5	91,7	69,4	37,4	38,5	56,1	111,3	153,2
Стандартная ошибка	3,7	3,4	3,6	2,6	2,0	2,4	1,8	2,4	1,1	1,7	3,1
Стандартное отклонение	11,58	10,82	11,31	8,13	6,20	7,69	5,58	7,65	3,54	5,42	9,92
Дисперсия выборки	134,01	117,07	127,96	66,06	38,46	59,16	31,16	58,50	12,54	29,34	98,40
Эксцесс	0,19	2,30	0,23	-0,86	0,36	1,94	-0,93	-0,77	0,80	-1,15	-0,07
Асимметричность	-0,70	-1,51	-0,91	-0,20	-1,17	-1,44	-0,13	0,29	1,42	0,09	-0,52
Интервал	37	35	34	25	19	25	17	22	10	16	32
Минимум	82	122	119	87	79	52	29	28	53	103	135
Максимум	119	157	153	112	98	77	46	50	63	119	167
Сумма	1017	1468	1388	1005	917	694	374	385	561	1113	1532
Куст № 53-29											
Среднее	97,7	142,8	135,0	95,4	87,8	65,0	33,2	34,5	53,0	107,4	149,2
Стандартная ошибка	3,7	3,4	3,7	2,2	1,9	2,3	1,7	2,4	1,0	1,7	3,1
Стандартное отклонение	11,58	10,84	11,59	7,00	5,98	7,12	5,39	7,65	3,09	5,44	9,92
Дисперсия выборки	134,01	117,51	134,22	48,93	35,73	50,67	29,07	58,50	9,56	29,60	98,40
Эксцесс	0,19	2,29	0,23	-0,33	-0,03	1,89	-0,68	-0,77	0,57	-1,21	-0,07
Асимметричность	-0,70	-1,49	-0,79	-0,37	-1,08	-1,38	-0,12	0,29	1,35	0,03	-0,52
Интервал	37	36	36	23	18	24	17	22	9	16	32

Минимум	78	118	115	83	76	49	25	24	50	99	131
Максимум	115	154	151	106	94	73	42	46	59	115	163
Сумма	977	1428	1350	954	878	650	332	345	530	1074	1492
	,,,	1.20	1500	,	0,0	000	232	3.0	230	10,.	1.,_
Куст № 54-04	100.4	1467	127.0	1045	02.1	667	22.6	22.0	5 16	100 5	150.2
Среднее	100,4	146,7	137,8	104,5	92,1	66,7	33,6	32,0	54,6	108,5	152,3
Стандартная ошибка	4,1	3,0	3,6	2,4	1,9	2,7	1,9	1,0	0,9	1,5	1,5
Стандартное отклонение	13,06	9,39	11,33	7,44	5,97	8,41	6,02	3,30	2,99	4,74	4,79
Дисперсия выборки	170,49	88,23	128,40	55,39	35,66	70,68	36,27	10,89	8,93	22,50	22,90
Эксцесс	-0,61	0,04	-0,38	-0,58	-0,97	-1,53	0,46	1,21	-0,78	-0,56	0,35
Асимметричность	-0,70	0,71	0,53	0,48	0,24	-0,07	-0,41	0,77	0,20	0,19	0,11
Интервал	38	31	36	22	18	23	21	11	9	15	17
Минимум	79	134	121	96	83	55 5 0	22	28	50	101	144
Максимум	117	165	157	118	101	78	43	39	59	116	161
Сумма	1004	1467	1378	1045	921	667	336	320	546	1085	1523
Куст № 54-12											
Среднее	92,5	152,9	140,3	103,8	93,4	69,9	34,7	34,6	58,3	112,3	155,4
Стандартная ошибка	2,8	4,8	4,2	3,2	3,6	2,2	1,4	2,3	1,6	2,4	2,8
Стандартное отклонение	8,95	15,21	13,39	10,25	11,35	6,84	4,30	7,29	5,12	7,75	9,00
Дисперсия выборки	80,06	231,21	179,34	105,07	128,71	46,77	18,46	53,16	26,23	60,01	80,93
Эксцесс	-1,09	-0,67	-1,28	-0,25	-0,82	0,06	0,96	6,75	-0,55	-0,52	0,41
Асимметричность	-0,54	0,23	-0,10	0,24	-0,16	-0,27	-0,44	2,47	-0,49	-0,63	0,00
Интервал	26	46	38	34	35	23	15	25	16	23	30
Минимум	78	130	119	87	76	57	26	29	49	100	142
Максимум	104	176	157	121	111	80	41	54	65	123	172
Сумма	925	1529	1403	1038	934	699	347	346	583	1123	1554
Куст № 54-17											
Среднее	104,1	159,5	152,0	110,3	99,4	69,9	36,1	34,5	56,1	112,9	160,5
Стандартная ошибка	3,9	6,1	6,7	4,7	4,7	3,2	2,0	1,5	3,2	2,8	2,6
Стандартное отклонение	12,22	19,39	21,06	14,85	14,73	10,10	6,47	4,77	10,20	8,92	8,28
Дисперсия выборки	149,21	376,06	443,33	220,46	216,93	102,10	41,88	22,72	104,10	79,66	68,50
Эксцесс	4,07	-0,72	-1,33	0,54	-1,10	-1,28	0,83	1,56	0,79	1,52	-1,64
Асимметричность	1,70	0,22	0,32	-0,50	0,41	0,27	-0,92	-1,20	-0,97	-0,74	0,17
Интервал	44	60	63	52	44	30	22	16	35	32	22
Минимум	90	131	123	82	80	55	23	24	35	94	150
Максимум	134	191	186	134	124	85	45	40	70	126	172
Сумма	1041	1595	1520	1103	994	699	361	345	561	1129	1605
Куст № 54-18											
Среднее	104,1	149,7	141,4	103,1	93,1	70,5	35,3	39,5	55,0	109,9	149,5
Стандартная ошибка	2,6	3,5	2,8	2,8	2,5	2,2	2,8	3,0	1,5	1,8	2,4
Стандартное отклонение	8,36	10,93	8,96	8,70	7,92	7,01	8,87	9,49	4,85	5,57	7,68
Дисперсия выборки	69,88	119,57	80,27	75,66	62,77	49,17	78,68	90,06	23,56	30,99	58,94
Эксцесс	0,29	3,33	0,18	0,41	-1,42	-1,30	-1,74	-1,48	-0,33	-1,04	-1,01
Асимметричность	-0,42	1,75	1,12	0,85	-0,40	-0,14	-0,30	0,19	1,09	0,25	-0,72
Интервал	29	36	25	28	22	20	24	27	14	17	22
Минимум	88	140	132	93	81	60	22	27	50	102	137
~											

Максимум	117	176	157	121	103	80	46	54	64	119	159
Сумма	1041	1497	1414	1031	931	705	353	395	550	1099	1495
Куст № 55-08											
Среднее	90,8	137,6	129,9	94,0	89,9	63,8	34,2	31,5	54,0	105,0	143,5
Стандартная ошибка	3,1	3,9	2,9	2,3	1,4	1,5	0,8	1,0	0,8	1,5	2,7
Стандартное отклонение	9,87	12,37	9,13	7,21	4,38	4,66	2,66	3,24	2,58	4,64	8,59
Дисперсия выборки	97,51	152,93	83,43	52,00	19,21	21,73	7,07	10,50	6,67	21,56	73,83
Эксцесс	-2,08	-1,16	-1,55	-1,02	-0,61	-0,30	-0,13	-0,08	0,02	-0,96	-0,69
Асимметричность	0,03	-0,94	-0,53	-0,21	-0,87	-0,57	0,31	0,00	0,73	0,40	0,01
Интервал	25	31	24	22	13	15	9	11	8	14	27
Минимум	79	118	116	83	82	55	30	26	51	99	131
Максимум	104	149	140	105	95	70	39	37	59	113	158
Сумма	908	1376	1299	940	899	638	342	315	540	1050	1435
Куст № 60-03											
Среднее	108,5	148,1	141,0	101,7	90,4	70,6	35,3	36,2	57,5	110,5	154,2
Стандартная ошибка	2,3	2,4	3,1	2,0	2,3	1,5	1,0	1,5	1,4	1,5	1,3
Стандартное отклонение	7,14	7,49	9,89	6,25	7,14	4,79	3,16	4,61	4,45	4,70	4,18
Дисперсия выборки	50,94	56,10	97,78	39,12	50,93	22,93	10,01	21,29	19,83	22,06	17,51
Эксцесс	-0,78	1,21	0,44	-0,53	1,70	1,87	2,52	-0,41	-1,09	-1,45	-0,45
Асимметричность	-0,07	-0,05	-0,69	0,73	-0,48	-1,11	-1,32	-0,36	0,45	-0,29	0,71
Интервал	22	28	33	19	27	17	11	15	13	13	12
Минимум	97	134	121	94	76	60	28	28	52	104	149
Максимум	119	162	154	113	103	77	39	43	65	117	161
Сумма	1085	1481	1410	1017	904	706	353	362	575	1105	1542
Куст № 60-13											
Среднее	97,3	151,8	140,1	103,9	92,5	70,1	36,4	37,3	54,7	113,7	155,9
Стандартная ошибка	2,3	2,0	1,6	2,3	1,2	2,0	1,8	2,5	1,1	1,8	2,3
Стандартное отклонение	7,39	6,36	4,91	7,19	3,92	6,24	5,56	8,01	3,43	5,62	7,14
Дисперсия выборки	54,68	40,40	24,10	51,66	15,39	38,99	30,93	64,23	11,79	31,57	50,99
Эксцесс	2,87	4,32	-0,07	2,96	-0,55	2,04	-0,45	-1,21	0,26	-0,72	3,07
Асимметричность	-1,46	-2,07	-0,56	-1,54	-0,41	-1,31	-0,67	0,59	0,92	-0,07	0,92
Интервал	26	21	16	25	12	21	17	22	11	18	28
Минимум	80	136	131	87	86	56	26	28	50	105	144
Максимум	106	157	147	112	98	77	43	50	61	123	172
Сумма	973	1518	1401	1039	925	701	364	373	547	1137	1559

Таблица 4. – Вероятность оценок различий средних морфометрических значений признаков листьев выделенных кустов сорта Каберне-Совиньон.

Вероятность (левое среднее > верхнего среднего) по бутстреп-методу

Кусты	52-23	52-18	53-29	54-04	54-12	54-17	54-18	55-08	60-03	60-13
52-23		0,343	0,658	0,446	0,947	0,195	0,152	0,972	0,012	0,722
52-18	0,657		0,792	0,597	0,980	0,330	0,291	0,990	0,044	0,856

53-29	0,342	0,208		0,303	0,881	0,098	0,065	0,932	0,003	0,542
54-04	0,554	0,403	0,697		0,950	0,253	0,216	0,972	0,030	0,755
54-12	0,053	0,020	0,119	0,050		0,002	0,001	0,666	0,000	0,085
54-17	0,805	0,670	0,902	0,747	0,998		0,482	0,999	0,151	0,956
54-18	0,848	0,709	0,935	0,784	0,999	0,518		1,000	0,090	0,981
55-08	0,028	0,010	0,068	0,028	0,334	0,001	0,000		0,000	0,042
60-03	0,988	0,956	0,997	0,970	1,000	0,849	0,910	1,000		1,000
60-13	0,278	0,144	0,458	0,245	0,915	0,044	0,019	0,958	0,000	
52-23		0,340	0,676	0,352	0,074	0,012	0,151	0,930	0,214	0,028
52-18	0,660		0,809	0,525	0,138	0,025	0,277	0,969	0,383	0,087
53-29	0,324	0,191		0,185	0,032	0,004	0,058	0,854	0,084	0,005
54-04	0,648	0,475	0,815		0,125	0,023	0,248	0,980	0,344	0,073
54-12	0,926	0,862	0,968	0,875		0,187	0,717	0,997	0,826	0,582
54-17	0,988	0,975	0,996	0,977	0,813		0,928	1,000	0,968	0,896
54-18	0,849	0,723	0,942	0,752	0,283	0,072		0,997	0,641	0,278
55-08	0,070	0,031	0,146	0,020	0,003	0,000	0,003		0,004	0,000
60-03	0,786	0,617	0,916	0,656	0,174	0,032	0,359	0,996		0,107
60-13	0,972	0,913	0,995	0,927	0,418	0,104	0,722	1,000	0,893	
52-23		0,364	0,665	0,452	0,276	0,017	0,166	0,946	0,199	0,218
52-18	0,636		0,783	0,590	0,391	0,030	0,284	0,977	0,315	0,373
53-29	0,335	0,217		0,288	0,161	0,007	0,068	0,874	0,093	0,085
54-04	0,548	0,410	0,712		0,316	0,022	0,204	0,968	0,237	0,265
54-12	0,724	0,609	0,839	0,684		0,058	0,415	0,985	0,443	0,519
54-17	0,983	0,970	0,993	0,978	0,942		0,939	1,000	0,945	0,970
54-18	0,834	0,716	0,932	0,796	0,585	0,061		1,000	0,527	0,651
55-08	0,054	0,023	0,126	0,032	0,015	0,000	0,000		0,003	0,000
60-03	0,801	0,685	0,907	0,763	0,557	0,055	0,473	0,997		0,613
60-13	0,782	0,627	0,915	0,735	0,481	0,030	0,349	1,000	0,387	
52-23		0,272	0,824	0,030	0,083	0,011	0,091	0,912	0,141	0,048
52-18	0,728		0,943	0,113	0,202	0,029	0,236	0,977	0,352	0,149
53-29	0,176	0,057		0,001	0,011	0,002	0,008	0,679	0,010	0,003
54-04	0,970	0,887	0,999		0,572	0,124	0,661	1,000	0,830	0,564
54-12	0,917	0,798	0,989	0,428		0,117	0,570	0,996	0,718	0,482
54-17	0,989	0,971	0,998	0,876	0,883		0,916	0,999	0,959	0,900
54-18	0,909	0,764	0,992	0,339	0,430	0,084		0,998	0,663	0,395
55-08	0,088	0,023	0,321	0,000	0,004	0,001	0,002		0,002	0,001
60-03	0,859	0,648	0,990	0,170	0,282	0,041	0,337	0,998		0,217
60-13	0,952	0,851	0,997	0,436	0,518	0,100	0,605	0,999	0,783	
52-23		0,231	0,784	0,185	0,177	0,019	0,135	0,489	0,416	0,102
52-18	0,769		0,934	0,447	0,332	0,051	0,324	0,787	0,677	0,369

53-29	0,216	0,066		0,041	0,073	0,005	0,037	0,174	0,176	0,010
54-04	0,815	0,553	0,959		0,367	0,061	0,365	0,837	0,726	0,423
54-12	0,823	0,668	0,927	0,633		0,142	0,528	0,830	0,772	0,600
54-17	0,981	0,949	0,995	0,939	0,858		0,895	0,984	0,970	0,937
54-18	0,865	0,676	0,963	0,635	0,472	0,105		0,878	0,800	0,592
55-08	0,511	0,213	0,826	0,163	0,170	0,016	0,122		0,418	0,069
60-03	0,584	0,323	0,824	0,274	0,228	0,030	0,200	0,582		0,195
60-13	0,898	0,631	0,990	0,577	0,400	0,063	0,408	0,931	0,805	
52-23		0,242	0,766	0,565	0,184	0,238	0,136	0,903	0,091	0,155
52-18	0,758		0,919	0,787	0,445	0,456	0,371	0,976	0,340	0,414
53-29	0,234	0,081		0,308	0,045	0,092	0,029	0,689	0,011	0,035
54-04	0,435	0,213	0,692		0,164	0,211	0,125	0,841	0,091	0,141
54-12	0,816	0,555	0,955	0,836		0,504	0,421	0,993	0,390	0,467
54-17	0,762	0,544	0,908	0,789	0,496		0,433	0,968	0,413	0,471
54-18	0,864	0,629	0,971	0,875	0,579	0,567		0,996	0,483	0,551
55-08	0,097	0,024	0,311	0,159	0,007	0,032	0,004		0,000	0,005
60-03	0,909	0,660	0,989	0,909	0,610	0,587	0,517	1,000		0,576
60-13	0,845	0,586	0,965	0,859	0,533	0,529	0,449	0,995	0,424	
52-23		0,200	0,826	0,766	0,629	0,387	0,510	0,740	0,518	0,333
52-18	0,800		0,965	0,939	0,899	0,690	0,744	0,957	0,861	0,661
53-29	0,174	0,035		0,433	0,234	0,127	0,251	0,292	0,133	0,086
54-04	0,234	0,061	0,567		0,312	0,173	0,299	0,387	0,202	0,128
54-12	0,371	0,101	0,766	0,688		0,269	0,418	0,634	0,353	0,210
54-17	0,613	0,310	0,873	0,827	0,731		0,595	0,817	0,651	0,457
54-18	0,490	0,256	0,749	0,701	0,582	0,405		0,656	0,504	0,365
55-08	0,260	0,043	0,708	0,613	0,366	0,183	0,344		0,187	0,120
60-03	0,482	0,139	0,867	0,798	0,647	0,349	0,496	0,813		0,281
60-13	0,667	0,339	0,914	0,872	0,790	0,543	0,635	0,880	0,719	
52-23		0,270	0,730	0,966	0,733	0,767	0,207	0,979	0,541	0,408
52-18	0,730		0,890	0,996	0,888	0,933	0,393	0,998	0,803	0,642
53-29	0,270	0,110		0,840	0,500	0,493	0,086	0,886	0,263	0,201
54-04	0,034	0,004	0,160		0,134	0,080	0,005	0,636	0,008	0,017
54-12	0,267	0,112	0,500	0,866		0,485	0,089	0,918	0,256	0,201
54-17	0,233	0,067	0,507	0,920	0,515		0,057	0,953	0,198	0,160
54-18	0,793	0,607	0,914	0,995	0,911	0,943		0,997	0,850	0,721
55-08	0,021	0,002	0,114	0,364	0,082	0,047	0,003		0,003	0,009
60-03	0,459	0,197	0,737	0,992	0,744	0,802	0,150	0,997		0,353
60-13	0,592	0,358	0,799	0,983	0,799	0,840	0,279	0,991	0,647	
52-23		0,134	0,867	0,460	0,022	0,301	0,394	0,646	0,036	0,441
52-18	0,866		0,987	0,860	0,122	0,484	0,731	0,950	0,206	0,827

53-29	0,133	0,013		0,110	0,002	0,167	0,122	0,203	0,003	0,110
54-04	0,540	0,140	0,890		0,021	0,310	0,419	0,694	0,034	0,477
54-12	0,978	0,878	0,998	0,979		0,733	0,936	0,993	0,656	0,971
54-17	0,699	0,516	0,833	0,690	0,267		0,639	0,752	0,350	0,678
54-18	0,606	0,269	0,878	0,581	0,064	0,361		0,719	0,105	0,558
55-08	0,354	0,050	0,797	0,306	0,007	0,248	0,281		0,010	0,297
60-03	0,964	0,794	0,997	0,966	0,344	0,650	0,895	0,990		0,951
60-13	0,559	0,173	0,890	0,523	0,029	0,322	0,442	0,703	0,049	
52-23		0,193	0,793	0,644	0,147	0,126	0,400	0,977	0,289	0,030
52-18	0,807		0,955	0,902	0,358	0,300	0,725	0,998	0,642	0,154
53-29	0,207	0,045		0,308	0,045	0,044	0,144	0,867	0,077	0,003
54-04	0,356	0,098	0,692		0,085	0,077	0,264	0,960	0,161	0,009
54-12	0,853	0,642	0,955	0,915		0,431	0,799	0,995	0,748	0,318
54-17	0,874	0,700	0,956	0,923	0,569		0,829	0,994	0,789	0,408
54-18	0,600	0,275	0,856	0,736	0,201	0,171		0,988	0,392	0,056
55-08	0,023	0,002	0,133	0,040	0,005	0,006	0,012		0,003	0,000
60-03	0,711	0,358	0,923	0,839	0,252	0,211	0,608	0,997		0,072
60-13	0,970	0,846	0,997	0,991	0,682	0,592	0,944	1,000	0,928	
52-23		0,317	0,683	0,376	0,148	0,007	0,674	0,973	0,178	0,097
52-18	0,683		0,828	0,613	0,295	0,027	0,836	0,992	0,386	0,234
53-29	0,317	0,172		0,176	0,060	0,001	0,470	0,924	0,057	0,030
54-04	0,624	0,387	0,824		0,156	0,002	0,848	0,999	0,160	0,077
54-12	0,852	0,705	0,940	0,844		0,082	0,953	0,999	0,657	0,446
54-17	0,993	0,973	0,999	0,998	0,918		1,000	1,000	0,989	0,918
54-18	0,326	0,164	0,530	0,152	0,047	0,000		0,957	0,032	0,016
55-08	0,027	0,008	0,076	0,001	0,001	0,000	0,043		0,000	0,000
60-03	0,822	0,614	0,943	0,840	0,343	0,011	0,968	1,000		0,250
60-13	0,903	0,766	0,970	0,923	0,554	0,082	0,984	1,000	0,750	

Данные таблиц 3 и 4 показывают существующие различия между выделенными кустами по морфологическим признакам листьев (особенно это хорошо видно по значениям сумм данных 10 измерений и по оценочным вероятностям бутстреп-метода), что побудило использовать многомерный метод D_0 с целью более глубокого и обоснованного отбора морфологически измененного самого высокопродуктивного куста - протоклона [2, 16, 26].

Такой куст, отвечающий триединой задаче сочетания высокой продуктивности побега, стандартного качества по массовой концентрации сахаров сока ягод и морфологически отличающийся комплексом 11 признаков листьев, был отобран под номером 55-08 и аттестован после

получения высокой дегустационной оценки виноматериала уже как протоклон.

В 2009 г. черенки этого протоклона были переданы в биотехнологическую лабораторию Крымской ОСС СКЗНИИСиВ, где выращены оздоровленные безвирусные растения ин витро.

В заключение следует сказать, что как показал огромный опыт специалистов по клоновой селекции, такой морфометрический подход хотя и является эффективным, но он весьма труден. Тем более, что нахождение морфологических изменений листьев посильно лишь ампелографам и потому это далеко не простая задача. Выход найден решением проблемы клоновой селекции привлечением достижений молекулярной генетики [4, 11, 18-19].

Размноженные в ООО «Фанагория-Агро» и ЗАО «Победа» самыми различными способами клоны описаны и документально оформлены в виде сортов-клонов под названиями Каберне фанагорийский, Клерет темрюкский, Рислинг фанагорийский, Мускат темрюкский (рис. 11-14) и др.

Рис. 11. Технический сорт-клон винограда Каберне фанагорийский.

Рис. 12. Технический сорт-клон винограда Клерет темрюкский.

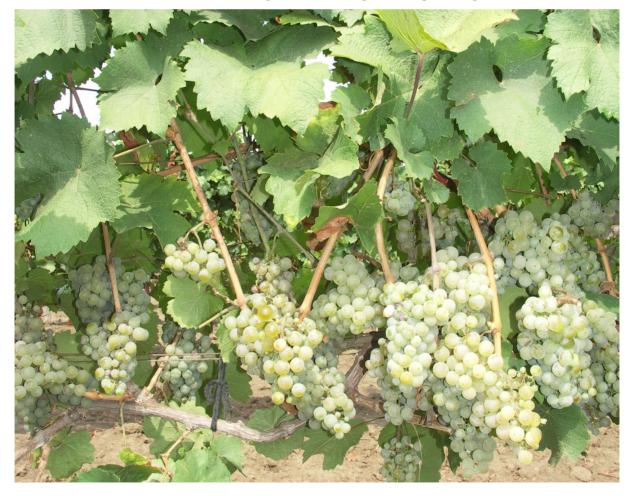


Рис. 13. Технический сорт-клон винограда Рислинг фанагорийский.

Рис. 14. Технический сорт-клон винограда Мускат темрюкский.

Выводы

Процесс клоновой селекции затруднен многолетним выяснением наличия изменений генотипической среды сорта. Для облегчения отбора высокопродуктивного протоклона селектируемого сорта необходимо использование самых современных методов генетического маркирования плюс-трансгрессий и отбора измененных по нуклеотидному составу растений с комплексом высоких значений ценных количественных признаков.

Литература

- 1. Ампелография СССР. М.: Пищепромиздат, 1946-1984. Т. 1-11.
- 2. Биометрическая оценка морфологических признаков популяции Каберне-Совиньон / А.С. Звягин, Л.П. Трошин, П.П. Подваленко, В.И. Вернигоров // Критерии и принципы формирования высокопродуктивного виноградарства. Анапа, 2007. С. 201–172.
- 3. Гугучкина Т.И., Якименко Е.Н., Трошин Л.П. Изучение натуральных сухих белых виноматериалов из протоклонов винограда сорта Клерет // Критерии и принципы формирования высокопродуктивного виноградарства. Анапа, 2007. С. 290-297.
- 4. Звягин А.С., Трошин Л.П. Паспортизация сортов и клонов винограда молекулярно-генетическим методом // Научное обеспечение агропромышленного комплекса. Краснодар, 2005. С. 128–132.
- 5. Звягин А.С., Трошин Л.П., Подваленко П.П. Биометрическая оценка морфологических признаков популяции Мерло // Критерии и принципы формирования высокопродуктивного виноградарства. Анапа, 2007. С. 165-172.
- 6. Звягин А.С., Трошин Л.П., Подваленко П.П. Биометрическая оценка морфологических признаков популяции Каберне-Совиньон // Критерии и принципы формирования высокопродуктивного виноградарства. Анапа, 2007. С. 201-172.
- 7. Итоги изучения сортов и клонов винограда в разных зонах Краснодарского края / Л.П. Трошин, Д.Е. Хлевный, А.С. Звягин, П.П. Подваленко, Т.И. Гугучкина, А.И. Мисливский // Технологии производства элитного посадочного материала и виноградной продукции, отбора лучших протоклонов. Краснодар: АлВи-Дизайн, 2005. С. 96-107.
- 8. Клоны белых сортов винограда в центральной зоне Краснодарского края и перспективы использования их в виноделии / Т.И. Гугучкина, О.Н. Шелудько, Н.Н. Бареева, Л.П. Трошин // Новации и эффективность производственных процессов в виноградарстве и виноделии. Т. І. Виноградарство. Краснодар, 2005. С. 98-104.
- 9. Майстренко А.Н. Совершенствование сортимента белых технических сортов винограда северной зоны промышленного виноградарства России методами селекции и интродукции. Автореф. дис... канд. с.-х. наук. Новочеркасск, 2000. 32 с.
- 10. Мисливский А.И. Элементы технологического комплекса устойчивого производства винограда в Краснодарском крае. Автореф. дис... канд. с.-х. наук. Краснодар, 2000.-28 с.
- 11. Негруль А.М., Гордеева Л.Н., Калмыкова Т.И. Ампелография с основами виноградарства. М.: Высшая школа, 1979. 397 с.
- 12. Программа восстановления и развития виноградарства и виноделия на 2002-2020 гг. // Экономическое обозрение. № 39 (487). 25 октября 2002 г. http://www.logos.press.md
- 13. Трошин Л.П. Ампелография и селекция винограда. Краснодар: РИЦ «Вольные мастера», 1999. 138 с.: цв. вкладка.
- 14. Трошин Л.П. Методология клоновой селекции винограда // Формы и методы эффективности регионального повышения экономической садоводства И виноградарства. Организация исследований И ИХ координация. Часть 2. Виноградарство. – Краснодар, 2001. – С. 92-94.
- 15. Трошин Л.П. Оценка и отбор селекционного материала винограда / ВНИИВиПП "Магарач". Ялта, 1990. 136 с.
- 16. Трошин Л.П., Животовский Л.А. Методические рекомендации по клоновой селекции винограда на продуктивность / ВНИИВиПП "Магарач". Ин-т общей генетики им. Н.И.Вавилова. Ялта, 1987. 36 с.

- 17. Трошин Л.П., Звягин А., Сидоренко Д. Использование биометрической оценки морфологических признаков клонов для идентификации генотипов сортогруппы Мерло // Научный журнал КубГАУ. -2008. -№ 38 (4). -5 с. http://ej.kubagro.ru/2008/04/.
- 18. Трошин Л.П., Звягин А.С. Технология отбора лучших протоклонов винограда // Технологии производства элитного посадочного материала и виноградной продукции, отбора лучших протоклонов. Краснодар: АлВи-Дизайн, 2005. С. 75-95.
- 19. Трошин Л.П., Звягин А.С., Подваленко П.П. Проблемы идентификации винограда // Виноделие и виноградарство. 2008. N 1. С. 34-35.
- 20. Трошин Л.П., Мисливский А.И. Клоноулучшение четырех технических сортов винограда в Таманской подзоне Кубани // Научный журнал КубГАУ. -2008. -№ 37 (3). -25 с. http://ej.kubagro.ru/2008/03/.
- 21. Трошин Л.П., Мисливский А.И., Броденко А.А. Стабильность урожайности технических сортов винограда // Виноград и вино России. 2000. № 4. С. 27-29.
- 22. Трошин Л.П., Радчевский П.П., Олешко Г.В. Рекомендуемые сорта и клоны винограда Северного Кавказа // Технологии производства элитного посадочного материала и виноградной продукции, отбора лучших протоклонов. Краснодар: АлВи-Дизайн, 2005. С. 108-253.
- 23. Трошин Л.П., Радчевский П.П. Районированные сорта винограда России. Краснодар: ООО «Вольные мастера», 2005. – 176 с.
- 24. Трошин Л.П., Цурканенко Н.Г. Новые технические сорта винограда // Садоводство и виноградарство. -2007. -№ 4. C. 24-25.
 - 25. Энциклопедия виноградарства. Кишинев: МСЭ, 1986-1987. Т. 1-3.
- 26. Эфрон Б. Нетрадиционные методы многомерного статистического анализа. М.: Финансы и статистика, 1988. 263 с.
 - 03.12.2009