Научный электронный журнал КубГАУ . № 05(13), 2005 УДК 532.5 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПОЛИВНОГО ПОЛИЭТИЛЕНОВОГО ТРУБОПРОВОДА СИСТЕМЫ КАПЕЛЬНОГО ОРОШЕНИЯ Микитюк А. В. – к. т. н., доцент Кажаров В. М. – аспирант Шугай П. Ю. – ассистент Кубанский государственный аграрный университет В статье приведен гидравлический расчет поливного полиэтиленового трубопровода системы капельного орошения. Получена теоретическая формула для определения потери напора в поливном трубопроводе, которая учитывает нелинейный закон изменения средней скорости потока по длине поливного трубопровода. Одним из основных элементов систем капельного орошения являются поливные трубопроводы с водовыпусками. Потери напора в поливном трубопроводе (ПТ) рекомендуется вычислять по формуле Дарси – Вейсбаха (1): При гидравлическом расчете ПТ необходимо учитывать движение жидкости с убывающим по пути расходом. Особенно значительно влияние переменной массы жидкости на потери напора, если поливные трубопроводы превышают длину 50 м [1]. Поэтому при вычислении потери напора в ПТ будем учитывать скорость жидкости в начале трубопровода. Определим потери напора на участках ПТ по формуле, используя выражение (1):
где
Предположим, что движение жидкости с раздачей расхода по пути можно описать в виде закона изменения средней скорости по длине участка трубопровода:
где x – расстояние от начала трубопровода до расчетного сечения; a – показатель степени, учитывающий нелинейный характер распределения скорости по длине трубопровода с капельницами. При a=1 получаем линейный закон изменения средней скорости потока по пути трубопровода, то есть равномерную раздачу расхода по пути, что необходимо при режиме капельного орошения культур. Но коэффициент a может изменяться от 1 до 0 в зависимости от длины трубопровода. Подставляя (3) в формулу (2), получим:
Формула (4) является функцией потерь напора при движении жидкости с переменной массой в зависимости от закона изменения средней скорости потока В зависимость (4) входит параметр Как было ранее установлено Е. В. Кузнецовым [2], А. А. Федорцом [3] и др. [4; 5], в случае движения жидкости с переменной массой в полиэтиленовых трубопроводах коэффициент
где А – постоянный коэффициент, учитывает влияние длины и диаметра трубопровода на потери напора;
Проанализируем безразмерный коэффициент a. При a=1 в трубопроводе может установиться ламинарный режим, тогда А=64. Имеются исследования Я. Т. Ненько, Г. А. Петрова [5; 6], которые указывают на то, что при небольших скоростях потока устанавливается переходной режим движения жидкости от ламинарного до области "гладких труб". В этом случае коэффициент А принимает любые другие целые значения в зависимости от длины ПТ и числа капельниц на нем. При a=0 коэффициент Решим уравнение (4), подставив в него формулу (5). После преобразований и дифференцирования получим:
где n – кинематическая вязкость жидкости. Обозначив через
Далее дифференцируем (6) по dx, получим:
Решим дифференциальное уравнение (7). Считаем, что температура жидкости постоянная, следовательно, n = const, диаметр трубопровода и скорость в его начале также постоянны:
или
Формула (8) служит для вычисления потерь напора в поливных трубопроводах систем капельного орошения. Формулу (8) можно представить в виде:
где Проведем анализ формулы (9). При a=1 получаем линейный закон изменения средней скорости потока по пути в трубопроводе. При этом коэффициент гидравлического трения будет определяться формулой [7]:
При a=0,25 коэффициент гидравлического трения будет вычисляться формулой Блазиуса [8]:
При a=0,45 коэффициент гидравлического трения принимает вид [6]: Экспериментально учеными установлено [2; 9; 10], что В результате теоретических исследований можно прийти к выводу о том, что коэффициент гидравлического трения l в поливных полиэтиленовых трубопроводах находится для чисел
где Список литературы 1. Орел, И. П. Гидравлический расчет поливных трубопроводов систем капельного орошения / И. П. Орел, Ю. Н. Великанов // Гидротехника и мелиорация. – 1978. – № 7, С. 52–55. 2. Кузнецов, Е. В. Влияние транзитной скорости на отклонение потока при истечении через отверстия-водовыпуски / Е. В. Кузнецов // Тр. Кубан. СХИ. – Краснодар, 1980. – Вып. 172. – С. 115–122. 3. Федорец, А. А. Гидравлические исследования поливных трубопроводов систем капельного орошения. – В кн. : Новое в техн. и технол. полива / А. А. Федорец // Сб. науч. тр. ВНПО "Радуга". – 1978. – Вып. 2. – С. 115–120. 4. Маланчук, З. Р. Экспериментальные зависимости гидравлического расчета поливных трубопроводов. – В кн. : Новое в техн. и технол. полива / З. Р. Маланчук // Сб. науч. тр. ВНПО "Радуга". – 1979. – Вып. 12. – С. 184–189. 5. Ненько, Я. Т. О движении жидкости с переменной вдоль потока массой / Я. Т. Ненько // Тр. Харьковского гидромет. ин-та. – Харьков, 1938. – С. 3–50. 6. Петров, Г. А. Гидравлика переменной массы / Г. А. Петров. – Харьков : Изд. Харьк. ун-та, 1964. – 223 с. 7. Novotny, M. Techologia a hydraulika pomalej podpovrchovej zavlahy pre trvale plodiny / M. Novotny, A. Klopčėk // Vyskumneho ustavu zavlahoveho hospodarstwa. – Bratislave, 1981. – № 15. – С. 145–161. 8. Черноморцева, В. Н. Гидравлический расчет поливного трубопровода, оборудованного капельницами / В.Н. Черноморцева // Докл. ВАСХНИЛ. – 1983. – № 2. – С. 40–41. 9. Кузнецов, Е. В. Расходные характеристики капельниц-водовыпусков / Е. В. Кузнецов, Ю. А. Скобельцын // Тр. Кубан. СХИ. – Краснодар, 1982. – Вып. 198. – С. 73–79. 10. Федорец, А. А.Определение коэффициента гидравлического трения полиэтиленовых трубопроводов, применяемых для капельного орошения / А. А. Федорец, С. М. .Мороз, Л. А. Конюхов. – В кн. : Гидромелиорация и гидротехническое строительство. – Львов, 1979. – Вып. 7. – С. 63–67. |
Научный электронный журнал КубГАУ . № 05(13), 2005 |